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A variabilidade e a incerteza inerentes da energia eólica exigem que os operadores do 

sistema elétrico refinem suas políticas de Unit Commitment (UC) e despacho 

econômico. A implementação de metodologias eficazes que produzam decisões de UC 

resistentes a variações repentinas na geração eólica é fundamental para garantir uma 

operação confiável. Esta tese propõe aplicar uma abordagem de otimização robusta a 

um modelo hidrotérmico de UC que considera a energia eólica como uma fonte incerta 

de geração de energia. O modelo, que é formulado como um problema de UC de dois 

estágios, tem como objetivo minimizar o custo operacional no pior cenário de energia 

eólica dentro do conjunto de incerteza definido. A metodologia de solução é baseada no 

algoritmo de decomposição de Benders. Uma abordagem de amostragem de Monte 

Carlo é usada para avaliar o desempenho da solução determinada por este modelo. Os 

resultados apresentados mostram que o modelo robusto ofereceu uma solução 

econômica para todos os níveis considerados de incerteza. Além disso, foi formulado 

um modelo de despacho hidrotérmico (considerando a função detalhada de produção 

hidrelétrica, bem como o efeito cascata) para o sistema elétrico brasileiro, denominado 

STORM. Os resultados mostraram que o modelo STORM representa as principais 

características do sistema elétrico brasileiro, e pode ser usado como ferramenta para 

analisar as interações de mercado, os custos de eletricidade e os possíveis impactos das 

políticas / iniciativas regulatórias nacionais.
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The inherent variability and uncertainty of wind power require that system operators 

refine their Unit Commitment (UC) and economic dispatch policies. Implementing 

effective methodologies that produce UC decisions strong enough to deal with wind 

power variations is critical to ensure a reliable operation. This thesis proposes to apply a 

Robust Optimization approach to a hydrothermal UC model that considers wind energy 

as an uncertain source of power generation. The model is formulated as a two-stage UC 

problem with the objective of minimizing the total operational cost under worst wind 

power output scenario. The methodology solution is based on the Benders’ 

decomposition algorithm. A Monte Carlo sampling approach is used to evaluate the 

Robust UC solution. Results show that the robust optimization model delivered a cost-

efficient solution for all considered levels of uncertainty. Additionally, a deterministic 

optimization model for the Brazilian hydrothermal UC problem, called STORM, was 

formulated. This model considers technical restrictions of thermal and hydro power 

plants (including detailed hydro production function and cascade effect), as well as 

transmission capacity limitations between major electricity markets. Results show that 

STORM model can represent the main characteristics of the Brazilian power system, in 

such a way that it can be used as a tool to analyze and better understand market 

interactions, electricity costs and possible impacts of national energy policy/regulatory 

initiatives.  
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I. List of Abbreviations and Acronyms 

Table I-1. Sets Definition. 

Symbol Description 

𝑏𝑢𝑠 Set of power grid buses 

𝑏𝑢𝑠𝑊𝑖𝑛𝑑 ⊆ 𝑏𝑢𝑠 Subset of bus with wind generation 

𝑐𝑢𝑡𝑠𝑒𝑡 ⊆ 𝑖𝑡𝑒𝑟 Subset of Iterations that generated an optimality cut 

𝐺𝐵(𝑏𝑢𝑠, 𝑥) Bi-dimensional set linking generation unit 𝑥 with bus bus, and 

𝑥 = {ℎ𝑇, 𝑗, 𝑛𝑐𝑙, 𝑝𝑒𝑛} 

ℎ𝑑 ⊆ ℎ𝑇 Set of hydropower plants with reservoir 

ℎ𝑟 ⊆ ℎ𝑇 Set of run-of-river (ROR) hydropower plants  

ℎ𝑇 Set of hydropower plants  

𝑖𝑡𝑒𝑟 Set of iterations in benders’ decomposition method 

𝑗 Set of thermal power plants 

𝑀𝐶𝑠 Set of Monte Carlo Sampling scenarios 

𝑙𝑖𝑚 ± Set of power flow directions (positive or negative)  

𝑛𝑐𝑙 Set of nuclear power plants 

𝑝𝑒𝑛 Set of penalty power plants  

𝑝𝑙𝑛 Set of planes that describe the hydropower production function 

(HPF)  

𝑝𝑙𝑛𝑅 Set of planes that describe the ROR- HPF 

𝑡 Set of time periods (h)s 

𝑇𝑏𝑙𝐶𝑎𝑠𝑐(ℎ𝑇, ℎ𝑥) Set of hydropower units (hx) upstream of unit hT  

𝑙𝑖𝑛𝑒 Set of transmission lines  

𝑢𝑡𝑡 ⊆ 𝑡 Subset of set t for min UP/down time 

𝑤𝑒𝑒𝑘 Set of operative weeks 

𝑤𝑛 Set of wind hotspots 

𝑠𝑟 Set of solar hotspots 

𝑠𝑢 Set of small generation units 

Λ𝑤𝑛−𝑏𝑢𝑠𝑊𝑖𝑛𝑑 Bi-dimensional set linking wind hotspot 𝑤𝑛 with bus busWind  

Λ𝑠𝑟−𝑏𝑢𝑠 Bi-dimensional set linking solar hotspot 𝑠𝑟 with bus bus 

Λ𝑠𝑢−𝑏𝑢𝑠 Bi-dimensional set linking small generation unit 𝑠𝑢 with bus bus  
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Table I-2. Parameters Definition. 

Symbol Description 

𝐵𝑔𝑡𝑏𝑢𝑠𝑊𝑖𝑛𝑑 Uncertainty budget for wind power generation at busWind 

𝐶𝑎𝑝𝑇𝑥𝑙𝑖𝑛𝑒,𝑙𝑖𝑚𝑥 Transmission line capacity of 𝑙𝑖𝑛𝑒 for the 𝑙𝑖𝑚𝑥 power flow 

direction (MW) 

𝐶𝑜𝑙𝑑𝑆𝑗 Startup cost of thermal power unit j ($) 

𝐶𝑂𝑉𝐹 Fuel and O&M cost of nuclear power plants ($/MWh) 

𝐶𝑃𝑒𝑛 Operation cost for penalty units ($/MWh) 

𝐶𝑉𝑂𝑀𝑑𝐸𝑞 Variable O&M cost of RES hydropower plants ($/MWh) 

𝐶𝑉𝑂𝑀𝑡𝐽  Variable O&M cost of thermal power unit j ($/MWh) 

𝐶𝑆𝑑𝑗 Shutdown cost of thermal power unit j ($) 

𝐶𝑊𝑎𝑡𝑒𝑟ℎ𝑑,𝑤𝑒𝑒𝑘 Water value for RES hydropower plants per week ($ ℎ𝑚3⁄ ) 

𝐷𝑒𝑚𝑎𝑛𝑑𝑏𝑢𝑠,𝑡 Demand by bus at time t (MWh) 

𝐷𝑇𝑗 Minimum down time of thermal power unit j (h) 

𝐼𝑛𝑑𝐴𝑗 Slope of the fuel cost curve of j power unit ($/MWh) 

𝐼𝑛𝑑𝐵𝑗 Constant coefficient of the Fuel cost curve of j power unit 

($) 

𝐼𝑛𝑓𝑙𝑜𝑤ℎ𝑇ℎ𝑇,𝑡 Incremental Inflow of hT hydropower unit at time t (𝑚3 𝑠⁄ ) 

𝐼𝑛𝑖𝑡𝑉𝑎𝑙ℎ𝑑 Initial Reservoir Level of hd unit (ℎ𝑚3) 

 𝑀𝑎𝑥𝐿𝑒𝑣𝑒𝑙ℎ𝑑 Maximum reservoir level of hd unit (ℎ𝑚3) 

𝑀𝑎𝑥𝑁𝑐𝑙𝑛𝑐𝑙 Nominal capacity of nuclear thermal power unit ncl (MW) 

𝑀𝑖𝑛𝐿𝑒𝑣𝑒𝑙ℎ𝑑 Minimum reservoir level of hd unit (ℎ𝑚3) 

𝑀𝑖𝑛𝑁𝑐𝑙𝑛𝑐𝑙 Minimal power generation of unit ncl (MW) 

𝑃𝑐𝑎𝑝𝑗 Nominal capacity of thermal power unit j (MW) 

𝑃ℎ𝑑𝑀𝑎𝑥ℎ𝑑   Nominal capacity of hd hydropower plant (MW) 

𝑃𝑚𝑎𝑥𝑅𝑂𝑅ℎ𝑟 Nominal capacity of hr hydropower plant (MW) 

𝑃𝐿𝐷ℎ𝑑 Electricity price in spot markets (𝑀𝑊ℎ $⁄ ) 

𝑃𝑚𝑖𝑛ℎ𝑑 Minimal power generation of hd hydropower plant (MW) 

𝑃𝑚𝑖𝑛𝑗 Minimal power generation of thermal power unit j (MW) 

𝑃𝑝𝑐ℎ𝑏𝑢𝑠,𝑡 Small hydro power generation by bus and time t (MWh) 

𝑃𝑟𝑜𝑑𝑢𝑡ℎ𝑇 Hydropower plant productivity of hT unit (𝑀𝑊 (𝑚3/𝑠)⁄ ) 

𝑃𝑠𝑚𝑃𝑈𝑠𝑚,𝑡 Seasonal “capacity factor” for small power unit sm at time t  

𝑃𝑠𝑜𝑙𝑎𝑟𝑃𝑈𝑠𝑟,𝑡 Hourly capacity factor for 𝑠𝑟 solar hotspot at time t 

𝑃𝑠𝑜𝑙𝑎𝑟𝑏𝑢𝑠,𝑡 Solar PV power generation by bus and time (MWh) 
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𝑃𝑠𝑡𝑚𝑏𝑢𝑠,𝑡 Small units thermal power generation by bus and time 

(MWh) 

𝑃𝑇𝐷𝐹𝑙𝑖𝑛𝑒,𝑏𝑢𝑠 Distribution factor for DC power flow of line connected to 

bus 

𝑃𝑉𝐶𝑎𝑝𝑠𝑟 Nominal capacity of 𝑠𝑟 solar hotspot (MW) 

𝑃𝑤𝑖𝑛𝑑𝐶𝑎𝑝𝑏𝑢𝑠𝑊𝑖𝑛𝑑 Maximum wind power generation capability link to busWind 

𝑃𝑤𝑖𝑛𝑑𝐹𝑐𝑎𝑠𝑡𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡 Forecast wind power generation link to busWind and time t 

(MWh) 

𝑃𝑤𝑖𝑛𝑑𝑈𝑃𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡 Upper bound of wind power generation at busWind and t 

𝑃𝑤𝑖𝑛𝑑𝐷𝑊𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡 Lower bound of wind power generation at busWind and t 

𝑃𝑤𝑖𝑛𝑑𝑃𝑈𝑤𝑛,𝑡 Hourly capacity factor for 𝑤𝑚 wind hotspot  

𝑄𝑚𝑎𝑥ℎ𝑑 Maximum water discharge of ℎ𝑑 power unit (𝑚3 𝑠⁄ ) 

𝑄𝑚𝑎𝑥𝑅𝑂𝑅ℎ𝑟 Maximum water discharge of hr power unit (𝑚3 𝑠⁄ ) 

𝑄𝑚𝑖𝑛ℎ𝑑 Minimum water discharge of the hd power unit (𝑚3 𝑠⁄ ) 

𝑅𝑎𝑚𝑝𝑗 Online ramp rate of thermal power unit j 

𝑅𝑚𝑝𝑛𝑐𝑙 Online ramp rate of nuclear thermal power unit ncl 

𝑅𝑜𝑅𝐶𝑜𝑠𝑡ℎ𝑟 Variable O&M cost of ROR hydropower plants ($/𝑚3) 

𝑆𝑚𝑈𝑛𝐶𝑎𝑝𝑠𝑚 Nominal capacity of small power units (MW)  

 𝑆𝑝𝑖𝑙𝑀𝑎𝑥ℎ𝑑 Maximum spillage of the ℎ𝑑 hydropower plant (𝑚3 𝑠⁄ ) 

𝑆𝑝𝑖𝑛 Spin reserve requirement  

𝑆𝑅𝑎𝑚𝑝𝑗 Start ramp of thermal power unit 𝑗 (MW) 

𝑡𝑣𝑖𝑎𝑔ℎ𝑇 water transport delay for each hT unit in cascaded (h) 

𝑇 Total analysis period 

𝑈𝑇𝑗 Minimum up time of thermal power unit 𝑗 (h) 

𝑊𝑖𝑛𝑑𝐶𝑎𝑜𝑤𝑛 Nominal capacity of 𝑤𝑛 wind hotspot (MW)  

𝛾𝑜
ℎ𝑇,𝑝𝑙𝑛

 Constant term of the HPF for power unit hT and plane pln 

(MW) 

𝛾𝑉
ℎ𝑇,𝑝𝑙𝑛

 Volume coefficient of the HPF for power unit hT and plane 

pln (MW/hm³) 

𝛾𝑄
ℎ𝑇,𝑝𝑙𝑛

 Water discharge coefficient of the HPF for power unit hT 

and plane pln (MW·s/m³) 

𝛾𝑆
ℎ𝑇,𝑝𝑙𝑛

 Spillage coefficient of the HPF for power unit hT and plane 

pln (MW·s/m³) 
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Table I-3. Variables Definition. 

Symbol Description 

𝑐𝑢𝑡𝑐𝑜𝑠𝑡𝑖𝑡𝑒𝑟 Constant coefficient of Benders algorithm for the iterth loop cycle 

𝑐𝑢𝑡𝑐𝑜𝑒𝑓𝑓𝑈𝑖𝑡𝑒𝑟,𝑗,𝑡 Proportional coefficient of Benders algorithm for the binary variable of 

j thermal unit at time t and iterth loop cycle 

𝑐𝑢𝑡𝑐𝑜𝑒𝑓𝑓𝑉ℎ𝑖𝑡𝑒𝑟,ℎ𝑑,𝑡 Proportional coefficient of Benders algorithm for the binary variable of 

hd hydro unit at time t and iterth loop cycle 

𝐷𝑒𝑙𝑡𝑎𝑉𝑜𝑙ℎ𝑑 Reservoir level variation over the simulation time frame.  

𝐻𝑦𝑑𝑟𝑜𝐶𝑜𝑠𝑡ℎ𝑑,𝑡 Total hydropower generation cost of ℎ𝑑 unit at time 𝑡 ($) 

𝐻𝑅𝑂𝑅𝐶𝑜𝑠𝑡ℎ𝑟,𝑡 Total hydropower generation cost of ℎ𝑟 unit at time 𝑡 ($) 

𝐿𝐵 Lower bound of Benders solution algorithm  

𝑃𝑒𝑛𝐶𝑜𝑠𝑡𝑝𝑒𝑛,𝑡 Total deficit cost at time 𝑡 ($) 

𝐺𝑒𝑛𝑃𝑒𝑛𝑝𝑒𝑛,𝑡 Power generation of penalty power unit pen at time 𝑡 (MWh) 

𝑁𝐶𝐿𝐶𝑜𝑠𝑡𝑛𝑐𝑙,𝑡 Total nuclear power generation cost of 𝑛𝑐𝑙 at time 𝑡– ($) 

𝑃ℎℎ𝑑,𝑡 ∥ 𝐻𝑃𝐹ℎ𝑑
𝑡  Power generation of RES hydropower unit hd at time 𝑡 (MWh)  

𝑃𝑛𝑐𝑙𝑛𝑐𝑙,𝑡 Power generation of nuclear thermal power unit ncl at time 𝑡 (MWh) 

𝑃𝑟𝑜𝑟ℎ𝑟,𝑡 ∥ 𝐻𝑃𝐹ℎ𝑟
𝑡  Power generation of ROR hydropower unit hr at time 𝑡 (MWh)  

𝑃𝑡𝑗,𝑡 Power generation of thermal power unit j at time 𝑡 (MWh) 

𝑃𝑤𝑖𝑛𝑑𝐸𝑞𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡 Power generation of wind farms at bus busWind and time t (MWh)  

𝑃𝑤𝑖𝑛𝑑𝑇𝑒𝑚𝑝𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡 Available wind generation power at bus busWind and time t (MWh)  

𝑟𝑚𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡,𝑀𝐶𝑠 Random variable, per busWind, time t, and scenario MCs used for 

Monte Carlo sampling analysis 

𝑅𝑠𝑟𝑣ℎ𝑑,𝑡 ∥ 𝑉ℎ𝑑
𝑡  Reservoir level of hydropower unit ℎ𝑑 at time 𝑡(ℎ𝑚3) 

𝑇ℎ𝑒𝑟𝑚𝐶𝑜𝑠𝑡𝑗,𝑡 Total thermal generation cost of 𝑗 unit at time 𝑡($) 

𝑆𝑝𝑖𝑙ℎ𝑑,𝑡 ∥ 𝑆ℎ𝑑
𝑡  Spillage in hd unit at time 𝑡 (𝑚3 𝑠⁄ ) 

𝑆𝑝𝑖𝑙𝑅𝑂𝑅ℎ𝑟,𝑡 ∥ 𝑆ℎ𝑟
𝑡  Spillage in hr unit at time 𝑡 (𝑚3 𝑠⁄ ) 

𝑇𝑢𝑟𝑏𝑅𝑂𝑅ℎ𝑟,𝑡 ∥ 𝑄ℎ𝑟
𝑡  Turbinated outflow in hr unit at time 𝑡 (𝑚3 𝑠⁄ )  

𝑇𝑢𝑟𝑏𝑊𝑎𝑡ℎ𝑑,𝑡 ∥ 𝑄ℎ𝑑
𝑡  Turbinated outflow of ℎ𝑑 hydropower unit at time 𝑡 (𝑚3 𝑠⁄ ) 

𝑈𝐵 Upper bound of Benders solution algorithm  

𝑈𝑗,𝑡 Binary variable - Indicates if thermal unit j is online at time 𝑡  

𝑈𝑜𝑓𝑓𝑗,𝑡 Binary variable - Indicates if thermal unit 𝑗  switches off at time 𝑡 

𝑈𝑜𝑛𝑗,𝑡 Binary variable - Indicates if  thermal unit j  switches on at time 𝑡 

𝑉𝑎𝑧𝑎𝑜𝐼𝑛𝐸𝑞ℎ𝑇,𝑡 Inflow of hydropower units (considering cascade) at time 𝑡 (𝑚3 𝑠⁄ ) 

𝑉ℎℎ𝑑,𝑡 Binary variable - Indicates if hydropower unit hd is online at time 𝑡  
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𝑍𝑛𝑒𝑔𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡 Binary variable - indicates if wind power output at bus 𝑏𝑢𝑠𝑊𝑖𝑛𝑑 

reaches the lower bound at time 𝑡  

𝑍𝑝𝑜𝑠𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡 Binary variable - indicates if wind power output at bus 𝑏𝑢𝑠𝑊𝑖𝑛𝑑 

reaches the upper bound at time 𝑡  

𝜗j,t Fuel cost function of 𝑗 thermal unit at time 𝑡 ($) 

Θ Auxiliary variable for solution of Master problem (Benders algorithm)  

𝑥. 𝑙 Nomenclature that refers to the actual level of a variable 𝑥 

𝜋1 to 𝜋29 Dual variables of the slave problem, defined in Section 4.1.2 

Φ() Cumulative standard normal distribution function 
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Chapter 1 

1.Introduction and Thesis Overview 

The power sector is leading an ongoing energy transition driven by the growing need 

for energy sources with net-zero direct greenhouse (GHG) gas emissions and the rapid 

decline on renewable electricity costs, particularly for wind and solar generation [1]. 

Due to the inherent characteristic of renewable energy, increasing levels of uncertainty 

and variability are being introduced into power systems, calling for more flexible 

systems. Flexibility in power systems can be  defined as “the ability of a power system 

to cope with variability and uncertainty in both generation and demand, while 

maintaining a satisfactory level of reliability at a reasonable cost, over different time 

horizons” [2]. Besides system flexibility, enhanced transmission system capacity, 

geographical dispersion and complementarity between energy sources are pointed out as 

key components to ensure the reliability of power systems with high levels of renewable 

energy [3] [4].  

The impacts of intermittent and renewable energy generation differ based on the time 

frame. Long-term impacts (1 year – 5 years) can be seen in energy models solutions 

that, without considering renewable energy variability, could lead to unfit investment 

portfolios that create generation and load mismatches, especially at peak load and/or 

high energy variability moments [5]. Short-term impacts (1 day - 1 week) can be seen in 

unit commitment (UC) models and real time operation as higher operating costs and/or 

load sheading due to required efforts to maintain the stability and reliability of power 

systems e.g. stricter ramping requirements and higher management of the reserves [6], 

[7]. The unit commitment problem is defined by [2] as “the determination of generating 

units to be committed during each interval of a short-term scheduling period (hours, a 

day or a week)” (p.1). The UC models are employed to ensure that sufficient resources 

are available for hours or days ahead to meet system demand and reserve requirements 

in an optimal and cost-efficient manner through the expected range of system operation 

conditions [2]. 
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Unit Commitment models are often used as a tool to better understand system 

flexibility [8]–[11]. However, determinist UC models generally require the use of 

operational reserve levels to increase system flexibility and handle uncertainty [12]. In 

this case, system operators make sure that there is enough power reserve to maintain 

system balance according to local reliability standards. Yet, these standards have been 

affected by the level of intermittent energy generation. In [13] was reported that an 

addition of 1500 MW (10% of peak demand) of wind energy into New York’s power 

system increased the regulation1 requirements by 8 MW, and an addition of 3300 MW 

(20% of peak demand) caused an increment of 36 MW [7]. In the Ontario case study 

[14] the impacts of wind penetration through different penetration scenarios (4%, 17%, 

20%, 27% and 33%) and regulation requirements were analyzed. According to the 

study, even with high levels of wind energy penetration the 1-min regulation2 

requirements were not highly impacted due to aggregation and spatial distribution 

effect. However, for levels of penetration above 17% (5 GW) the 5-min load following 

requirement may exceed the capability of existing generators, and from scenarios 

beyond 20% (6 GW wind capacity) the 10-min operating reserve requirement should be 

increased in order to accommodate extreme drops of wind generation. Additionally, 

high renewable energy penetration levels could result in transmission congestions and 

therefore higher transmission capacity requirements [15]. 

The day-ahead UC scheduling in purely thermal systems aims to minimize the 

operating cost through the reduction of fuel consumption subject mainly to system 

power balance constraints and generation power limits [16]. The day-ahead 

hydrothermal UC problem, on the other hand, is more challenging since the availability 

of water resources for electrical generation at each stage of the operation-planning 

horizon depends on the previous and future planned use of water, which establishes a 

dynamic and inter-temporal relationship among the operational decisions made along 

the whole horizon [17] [18]. Even more, in hydrothermal power systems is essential to a 

soft/hard link between the UC problem and the long-term operation planning problem, 

usually formulated as a multistage stochastic problem, in order to correctly define the 

value of water. Additionally, several technical constraints such as the hydropower 

                                                 

1 “Regulation is the balancing of fast second-to-second and minute-to-minute random variations in load or 

generation” [158]. 
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production function, water balance constraints and reservoir storage limits increase the 

problem complexity [19], [20], [21], making the hydrothermal UC problem one of the 

most challenging optimization problems in the economic operation of power systems 

[12].  

In general terms, the UC problem is a large-scale mixed integer nonlinear 

constrained optimization problem [22] that determines an hourly or sub-hourly 

generation dispatch for each committed unit without violating operational constraints  

taking into account water values and/or daily generation/discharge targets that, in the 

case of hydrothermal power systems, are calculated in the mid-term level scheduling 

problem (seasonal level) [18]. The UC model nonlinearities stem from the inclusion of 

quadratic curves for fuel and emissions costs [23], non-linear transmission constraints 

[2] and from the modeling of the hydro plant’s production curve, which is a nonlinear 

and non-concave function [24]. Additionally, even though linear programming models 

have been successfully used for solving UC problems, mixed integer programming 

models must be used when binary variables are associated with non-convexities, such as 

minimum run levels and minimum up and downtimes of thermal power plants [25]. The 

combinatorial characteristic of the problem formulation and the need of binary and non-

linear variables have encouraged researchers to focus on the development of efficient, 

optimal or near-optimal UC algorithms for large-scale power systems (as described on 

the review of [2]). 

Renewable energy (such as wind or solar power) increases the complexity of 

hydrothermal UC problems, mainly because of their unpredictability and variability. 

This renewable energy’s characteristics challenge power grid operation as affect 

conventional generation plants, which must follow the resultant power variations. 

Therefore, a higher share of renewable energy tends to induce an increase in the 

frequency of startups and ramping operation and periods of operation at low load levels. 

In other words, it can lead to a most costly and less reliable system operation [26]. Even 

though good forecasting and prediction tools can contribute to better deal with this 

scenario, the intermittent characteristic of renewable sources can still lead to curtailment 

and suboptimal operation of conventional power plants due to complexities in balancing 

                                                                                                                                               

2 Power sources online, on automatic generation control, that can respond rapidly to system-operator 

requests for up and down movements; used to track the minute-to-minute fluctuations in system load 

[159]. 
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load with generation while obeying system constraints in a minimization cost problem 

[2] [27].  

The cost of the reduced system efficiency depends on the unit commitment of 

conventional plants, renewable energy uncertainties, and system flexibility [12]. As 

mentioned, during conventional real-time operation, system operator dispatches the 

committed generation resources to satisfy the actual demand and reliability 

requirements. However, if the actual system condition deviates significantly from the 

expected one, system operators take corrective actions to maintain system stability, such 

as committing expensive fast-start generators or, in emergency cases, load shedding 

[28].  

With intermittent renewable energy playing an increasing role in the electrical power 

sector, short-term models or UC models must have enough robustness to determine unit 

commitment decisions that guarantee a stable and reliable system operation, even with 

high levels of uncertainty [29]. UC models that consider the economic and technical 

aspects of intermittent and renewable energy integration can be useful to: i) assess the 

extra costs on hydrothermal power operation, ii) check the technical feasibility of the 

solutions of power system planning models, iii) guarantee a reliable energy supply, iv) 

help the integration of non-conventional sources in a more robust and controllable way,  

v) reduce the possibility of technical infeasibilities and/or contingencies in real-time 

operation and vi) analyze the adverse impacts of renewable power integration, such as 

the increment of cyclic operations, thermal stress, EFOR (Equivalent Forced Outage 

Rate) levels  of thermal power plants, among others. [30]. In this context, it becomes 

important for system operators to have an effective methodology that produces robust 

unit commitment decisions considering the stochasticity of renewable energy generation 

and ensures system reliability in the presence of increasing real-time uncertainty [28]. 

1.1. Objectives  

The first objective of this thesis is to develop and validate a robust hydrothermal unit 

commitment model that considers wind energy as an uncertain source of power 

generation. The model is named R-STORM. In order to test the robust model’s ability 

to hedge against wind power uncertainty, the performance of R-STORM was compared 

against its equivalent deterministic model, using a Monte Carlo sampling method. The 

comparisons were made considering two fictional case studies (system A and system 
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B). The main difference between these systems is the greatest complexity of system B, 

which allows to test the robust approach in large scale systems and analyze 

computational performance characteristics of R-STORM.  

The second objective of this thesis is to validate the capability of the deterministic 

UC Model (STORM) to represent the Brazilian power system main characteristics. This 

validation was performed through numerical comparisons between the STORM 

dispatch and the power system dispatch made by the Brazilian power system operator 

(ONS), for four representative days. Therefore, the following specific objectives are 

considered:  

• To formulate and validate a deterministic optimization model for the 

hydrothermal unit commitment (UC) problem as a large-scale mixed-integer 

linear problem, based on previous formulations presented in the literature [23], 

[31] [32], [33]. Technical restrictions of thermal and hydro power plants 

(including detailed hydro production function and cascade effect), as well as 

transmission capacity limitations between major electricity markets, are 

considered. The model formulation is implemented in GAMS3. 

• To employ the Robust Optimization framework4 to hedge the system from wind 

energy uncertainty. This problem is formulated as a two-stage UC problem with 

the objective of minimizing the total operational cost under worst wind power 

output scenarios. The uncertainty set of this model is defined as a polyhedral set 

[34], [35],[36].  

• To apply the dual-based formulation and Benders’ decomposition algorithm5 as 

an heuristic solution methodology [37]. The problem formulation and solution 

algorithm are implemented in GAMS. 

• To employ a Monte Carlo sampling approach to evaluate the Robust UC 

solution. 

                                                 

3 GAMS is a software system that combines the language of mathematical algebra with traditional 

programming concepts in order to efficiently describe and solve optimization problems [160]. 
4 Methodology aimed at dealing with uncertain optimization problems where constraints must remain 

feasible for all reasonable realizations. 
5 The Benders decomposition implemented approach is a partitioning procedure for solving mixed-

variables programming problems. 
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1.2. Contribution  

The main contribution of this thesis is the development of two open-source models 

for the solution of the UC problems of large-scale hydrothermal power systems. The 

developed models can be especially useful to model power systems with high share of 

hydropower generation due to its highly sophisticated representation of hydropower 

reservoirs. These models (STORM and R-STORM) can be applied to other power 

systems beyond the case studies analyzed in this thesis, and therefore, they are an 

excellent starting point for many future analyses. STORM can be used, for example, to 

analyze the technical viability of scenarios related to energy policies and/or energy 

transactions. R-STORM, on the other hand, can be used in power systems with high 

penetration of non-dispatchable power generation, as an economically option to deal 

with uncertainty. Furthermore, different approaches to define the uncertainty set can be 

explored in order to better represent wind uncertainty in robust UC optimization.  

The methodological and practical contribution of this thesis is the development of an 

approach for implementing a Robust Optimization Unit Commitment problem in a 

large-scale hydrothermal context, considering a detailed hydro production function and 

the cascade effect in the water balance of hydropower plants. Hydropower modelling 

tend to be overlooked in UC formulations that deal with wind power uncertainty. 

However, for power systems that presents high levels of hydropower, such as the 

Brazilian one, appropriate reservoir modelling is crucial to reach accurate results. The 

robust optimization approach is an extension of a previous work [35] to hydrothermal 

systems with wind energy uncertainty. Nonetheless, R-STORM introduces the use of a 

piece-wise linear production function for hydroelectrical power plants that takes into 

account the water head as a function of the forebay and tailrace levels and considers 

spillage effects, proposed in [24]. 

1.3. Thesis synopsis 

The remainder of this thesis is structured as follows: Chapter 2 provides a literature 

review on Unit Commitment (UC) models with special focus on Robust Unit 

commitment approaches. The advantages and disadvantages of Robust UC models, 

related to deterministic UC models with spinning reserve and stochastic UC models, for 

power systems with high levels of uncertainty, is presented.  
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Chapter 3 presents the problem formulation for a deterministic hydrothermal unit 

commitment model considering wind power. This model takes into account individual 

unit constraints and system-wide constraints. Additionally, the operation of hydropower 

plants is modeled through its production function, individual technical restrictions and 

water balance, considering the cascade effect.  

Chapter 4 presents the formulation and the solution methodology for the Robust 

hydrothermal UC problem. The constraints considered in the formulation of this model 

are the ones presented in Chapter 3. However, in this analysis wind energy is a decision 

variable and it is optimized within an uncertainty set. Benders’ decomposition method is 

used as a solution framework.  

Chapter 5 is divided in two main sections. The first one validates the Brazilian 

deterministic UC model and the second one presents the Robust UC solutions for a 

reduced power system using different uncertainty budgets. A comparison is made 

between Robust UC Solutions and deterministic UC solutions with spinning reserve 

requirement; also called reserve adjustment method. A Monte Carlo sampling is 

employed to evaluate Robust UC solutions. Finally, an analysis of the scalability of the 

proposed model for higher dimensional uncertainty is presented. Chapter 6 provides the 

final remarks, the study limitations and future work suggestions.  
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Chapter 2 

2.Literature review  

2.1. Short-Term Operation Planning: The Unit Commitment 

Problem  

Traditionally, the unit commitment (UC) problem is a cost minimization problem 

that seeks for optimal unit commitment decisions and generation level (economic 

dispatch) decisions of power plants to meet the forecasted system load, while satisfying 

individual unit constraints, inter-temporal constraints of generating sources and system-

wide constraints such us reliability requirements and transmission constraints [28], [38]. 

The UC problem is generally formulated as a large-scale mixed-integer nonlinear and 

non-convex combinatorial problem, which can be modeled with  binary variables to 

represent on/off status of the generation units and continuous variables to represent the 

amounts of energy to be generated by the committed units [2], which makes it a 

complex mathematical problem [16],[39]. 

Several efficient methods capable of finding optimal or near–optimal UC solutions, 

in reasonable computational times, have been studied in the past decades (as described 

on the review of [2]). Commonly adopted methods to solve deterministic UC problems 

are Lagrangian relaxation-based methods [40] and Mixed Integer Programming-based 

methods (MIP)[41] [42]. The Lagrangian relaxation method is one of the most realistic 

and efficient method for large-scale systems. However, its disadvantage of inherent sub-

optimality means that its convergence to a feasible solution after a limited number of 

iterations is not guaranteed. Mixed Integer Linear Programming-based method (MILP) 

has become more popular since more efficient general-purpose MILP solvers, like 

CPLEX and GUROBI, have become available. Branch-and-Bound [16] is often used by 

commercial solvers to solve MIP problems because it guarantees global optimality. 

Nonetheless, it is important to highlight that its good performance for solving large-

scale systems requires large memory and high computational cost.  
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Traditionally, given that global UC optimal solutions can be challenging to find, 

uncertainty from sources like customer load, renewable generation, and unit availability 

have been often neglected or managed with reserve requirements [43]. However, higher 

penetration levels of variable generation resources (such as wind power, solar power, 

and distributed generators) and more price-responsive demand participation have posed 

new challenges to the UC problem. In the case of wind power, the inherent variability 

and uncertainty of the resource requires that both utility companies and system 

operators refine their unit commitment and economic dispatch policies. It has become 

increasingly important to have an effective methodology that produces robust UC 

decisions and ensures system reliability for electric power grids that everyday are more 

volatile due to increasingly real-time uncertainty [28]. 

In traditional approaches, uncertainty management is handled by imposing 

conservative reserve requirements to maintain the power grid reliability [34]. This 

approach is usually called “reserve adjustment method” and it is widely used in today’s 

power industry [28]. Much of the research related to this area, including [44]–[47], has 

focused on analyzing the levels of reserve requirements needed to implement preventive 

or corrective actions in order to handle outages. This kind of approach is usually based 

on deterministic criteria, such as loss of the largest generator or a number of system 

components [48]–[51]. Even though this approach is easy to implement, in the case of 

wind power uncertainty, for example, it can lead to an economically inefficient or even 

infeasible way to handle uncertainty, because the UC decision only considers the 

expected operating condition. Then, even with enough reserve available, the power 

system may still suffer capacity inadequacy when the real-time condition deviates 

significantly from the expected value. This is specially the case when the reserve 

requirement is determined by some a priori system-wide rules, rather than by a 

systematic analysis [36]. 

To tackle this situation, two alternative methods for uncertainty management have 

been proposed in the literature: the Stochastic programming based method [52]–[54] 

and the Robust optimization based method [29], [30], [55], [56]. Stochastic optimization 

methods for UC problems represent the uncertainty by using a set of scenarios based on 

a chosen Probability Distribution Function (PDF) with the objective of minimizing the 

total expected cost [57]–[59]. However, this approach has some practical limitations. 

For once, this approach is effective when the PDF is available, which is not a realistic 
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assumption since in most cases the detailed probability information is hard to obtain 

and, in the case of wind power, for example, the wind distribution is difficult to be 

defined day-ahead, especially when there is a lack of accurate large amounts of data 

[29]. Additionally, stochastic methods are computationally intensive since the problem 

size increases dramatically due to the large number of samples needed to generate the 

scenarios. To reduce this restriction, scenario reduction methods can be  adopted [52], 

[60], [61]. Nonetheless, this approach does not guarantee the feasibility for all the 

uncertainties, as only limited sample points are considered [38]. Even more, due to the 

objective of minimizing the total expected cost, in order to achieve the optimal 

objective value, a significant portion of wind energy may be curtailed due to operative 

restrictions such us minimum on/off time of slow and cheap thermal power plants. This 

means a waste of available resources and does not allow to use renewable energy as 

much as possible [62] [30]. 

The Robust Optimization (RO) approach has gained substantial popularity as a 

modeling framework led by Ben-Tal and Nemirovski [63]–[65], El Ghaoui et al.[66], 

[67] and Bertsimas and Sim [68], [69]. The main idea of RO based methods for Unit 

Commitment problems is to find a UC solution which is feasible for all possible 

realizations so that the total operating cost under the worst case scenario is minimized 

[34]. The appealing of RO stems from the fact that it only requires moderate 

information about the underlying uncertainty, such as the mean and the range of the 

uncertain data [28]. This makes the RO approach an appropriate framework to model 

optimization problems where the optimal solution must remain feasible for the 

parameter variations in a given user-defined set, called “uncertainty set” [70]. This 

concept is consistent with the risk-averse fashion in which power systems are operated. 

The developments performed in this thesis are focused on the RO approach. 

Nonetheless, it is important to mention that since the robust commitment decisions must 

be feasible for any realization within the uncertainty set, and neglects any underlying 

probabilistic information, over-conservative or too expensive schedules regarding 

stochastic optimization solutions can be produced.  

2.2. Robust Unit Commitment Optimization 

The decision environment in real world optimization problems is large scale and 

tends to be characterized by uncertain or inexact data, which can make the optimal 
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solution difficult to implement and in some cases infeasible in face of changes on the 

nominal data [71]. Ben-Tal and Nemirovski [71] showed that, from the practical point 

of view, nominal solutions can be meaningless since its optimality is damaged by small 

implementation errors. In order to “immunize” the system against implementation 

errors, one can use the Robust Counterpart methodology [72]. 

Robust optimization for linear programming problems was first introduced in the 

early 1970s by Soyster [73]. In the late 1990s and early 2000s, robust optimization was 

further developed by Ben-Tal and Nemirovski’s works [64] [71], El Ghaoui et al.[66], 

[67] and Bertsimas and Sim [68], [69]. In the Robust Optimization methodology, one 

associates an uncertain problem with its robust counterpart, which is a usually a semi-

infinite optimization program [64]. Robust optimization (RO) became an attractive 

framework for decision makers to tackle real problems with parameter ambiguity and 

stochastic uncertainty, when it is challenging to construct a stochastic model to capture 

randomness and the system reliability is a critical concern e.g. the operational problems 

in power industry [28], [29], [74]–[77]. Different from classical stochastic programming 

models, an RO formulation does not suffer from the curse of dimensionality (regarding 

the number of scenarios), does not assume any probabilistic information on random 

factors (it assumes “uncertainty sets”, described in Section 2.2.2, to capture 

randomness) and instead of seeking for solutions with the optimal expected value, it 

derives a best performance solution with respect to the worst cases in the uncertainty set 

[78]. Consequently, a RO model is less demanding on data to capture randomness and 

its solution is more reliable towards uncertainty.  

Nonetheless, decision makers generally have different attitudes with respect to 

infeasibility and sub-optimality. Therefore, what does it mean for the decision-maker a 

robust solution? Robust Optimization concept relies on finding a solution whose 

feasibility is guaranteed for any realization of the uncertain parameters using the worst-

case analysis. In other words, a solution is obtained through the use of the uncertain 

value that would create “the most damage” to the system [64] [71]. However, how 

should the worst-case analysis be defined? Should it use a finite number of scenarios, 

such as historical data, or continuous convex uncertainty sets? As presented by Gabrel 

et al. [79], RO solutions tends to be overly conservative and may not be cost-effective 

since it must hedge against any possible realization. The correct definition of 

uncertainty sets can be seen as a trade-off between system performance and protection 
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against uncertainty [77]. The major challenges associated with the RO methodology are: 

i) how to specify reasonable uncertainty sets in specific application [71], ii) how can we 

reformulate the problem as a “computationally tractable” optimization problem, or at 

least approximate it by a tractable problem. 

In RO complete protection from adverse realizations often comes at the expense of 

severe deterioration in the objective value [28]. Therefore, to make the robust 

methodology more appealing, robust optimization focuses on obtaining a feasible 

solution for any realization of the unknown coefficients within a ‘‘realistic’’ set, called 

the uncertainty set, described in Section 2.2.2. In this context, RO seeks for the optimal 

objective value, over a set of solutions that are feasible for all coefficient realizations 

within the uncertainty set. As mentioned before, the specific choice of the uncertainty 

set should be carefully analyzed since it will be crucial for ensuring computational 

tractability and limiting the over-conservatives’ solutions [79].  

Multistage RO Unit Commitment problems [80], [81], guarantee both the robustness 

and non-anticipativity6 of both UC and economic dispatch (ED) decisions [82]. 

However, multistage RO in its most general form [83] is currently computationally 

intractable. Some approaches such as affine policies7 have been studied as an effective 

approximation [80], [81], reducing the computational burden. Nonetheless, the affine 

policies are only an approximation to the full adaptive policies and can reduce the 

feasible region of the UC problem. In other words, the price of the convexification is 

that it shrinks the feasible set due to the strong assumptions and sacrifices the optimality 

of the solution [38] [84]. 

Because of the difficulty in incorporating multiple stages in RO, many works have 

focused on two-stages RO approaches to solve practical system design and operation 

problems [28], [34], [62], [85]–[87]. Two-stage RO was introduced to support decision 

making where decisions are partitioned into two stages; i.e., before and after uncertainty 

is disclosed. In this approach, the first stage decisions still need to be made with respect 

to any realization in the uncertainty set while the second stage decisions can be made 

after the first stage decisions are determined and the uncertainty is revealed, which 

essentially enables the decision maker a recourse opportunity [71], [72], [77]. This 

                                                 

6 Non - anticipative constraints are related with the fact that the uncertainty is unfolded sequentially over 

time, and the dispatch decisions are made accordingly [82]. 
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decision-making structure matches the day-ahead UC problem [84]. The uncertainty set 

and the consideration of the worst case performance with recourse opportunities provide 

a very flexible mechanism that can be used to satisfy more complicated modeling needs 

[77]. Under this direction, this thesis will discourse with more detail on two-stage robust 

UC models in Section 2.2.1. 

2.2.1. Two stage adaptive robust unit commitment 

Robust optimization claims “All decision variables represent here and now 

decisions: they should get specific numerical values as a result of solving the problem 

before the actual data “reveals itself” ” [78] (p.2). Adaptive robust optimization , on 

the other hand, relaxes this paradigm and considers that “some decision variables can 

be adjusted at a later moment in time according to a decision rule, which is a function 

of the uncertain data” [78] (p.6). In other words, in the adaptative robust optimization 

the unit commitment decision variables are the first-stage “here and now” decisions 

made before the uncertainty is revealed and the second-stage “wait and see” decision 

are the dispatch decision (amounts of generated energy) that can be adjusted according 

to the actual data of uncertain variables. 

Various adaptive two-stages robust UC models dealing with nodal injection 

uncertainty associated with both supply (e.g., wind power) and demand (e.g., demand 

forecast errors and price elasticity) have been studied. A robust formulation for the 

contingency constrained UC problem is proposed in Street et al. [36], [88]. Moreira et 

al. [89] proposed a contingency-constrained model for the co-optimization of energy 

and spinning reserves under both demand uncertainty and a deterministic security 

criterion, considering the correlation effect between nodal demands. Naversen et al. [90] 

present a two-stage model for scheduling power and procuring symmetric spinning 

reserves in a hydropower system with uncertain net load. Bertsimas et al. [28] present a 

security constrained robust UC formulation with system reserve requirements under 

nodal net injection uncertainty. Zhao and Zeng [29] present a robust UC formulation 

with demand response under wind uncertainty. Jiang et al. [91] used a two-dimensional 

uncertainty set to describe the uncertain problem parameters allowing uncertainty 

correlations among different grid nodes and among different time periods. Liu and 

                                                                                                                                               

7 Affine policies replace the unit dispatch decision variables with affine functions of the uncertain power 

injections. 
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Tomsovic [92] present a robust UC model to minimize the generalized social cost 

taking into account uncertainty of demand price elasticity. Duan et al. [93] propose a 

data-driven affinely adjustable distributionally RO for UC considering uncertain load 

and renewable generation forecasting errors. Wei et al. [94] propose a two-stage 

distributionally RO model for the joint energy and reserve dispatch of bulk power 

systems with renewable energy penetration. Morales-España et al. [95] demonstrate 

that, by considering dispatchable wind energy and a box uncertainty set for wind 

availability, an adaptive two-stage robust UC formulation can be translated into an 

equivalent single-level MIP. Apostolopoulou et al. [96] proposed an optimal dispatch 

scheme for a cascade hydroelectric power system that maximizes the head levels of 

each dam taking into account uncertainty in the net load variation. Lee et al. [87] 

propose a column-generation method for a two-stage robust UC problem considering 

transmission line constraints using the cutting-plane algorithm for the master problem, 

which dynamically includes critical transmission line constraints. 

The UC problem with uncertain node injections is usually formulated as a two-stage 

problem with a tri-level structure, or as two-stage problem with a two-level structure by 

dualizing the inner level of the slave problem [87], [35]. Due to the multi-level 

structure, the Benders’ Decomposition duality-based approach [28], [35] and the 

Column and Constraints Generation method (C&CG) [87] [29], [55], [96] are often 

applied. These optimization methods iteratively add vertex scenarios, found in the 

second-stage or slave problem, into the first-stage problem. In other words, if the first-

stage UC decisions cannot immunize against some specific vertex scenarios, the 

“worst” realizations of the uncertain parameter are obtained by solving the second-stage 

problem and then adding them as constraints (or cuts) into the first-stage problem. 

Nonetheless, solving a two-stage Robust UC is a hard task since the problem 

formulation is usually a bi-level problem where the outer level is a mixed-integer linear 

program (MIP), and the inner level is a bilinear program, which is non-deterministic 

polynomial-time hard (NP-hard) problem [28]. Solving bilinear problems typically 

requires sub-optimal heuristic methods [28], [91] or computationally expensive exact 

methods [55] [97]. Furthermore, due to the iteratively nature of the methodology 

solution algorithm (usually Benders decomposition or C&CG method), the bilinear 

problem is solved multiple times; which also requires solving a difficult master MIP 
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problem repeatedly [35] [55]. This computational difficulty highlights the challenges of 

creating efficient methods to find effective robust UC solutions.  

As mentioned, the presence of bilinear and non-convex terms makes it difficult to get 

the exact two-stage Robust UC optimal solution in acceptable time [87]. Bertsimas et al. 

[28] find the local optimal solution of the sub-problem (second stage) using an iterative 

heuristic through an outer-approximation algorithm with general polyhedral uncertainty 

sets. The authors in [29], [34], [35], [98] transform the separable bilinear sub-problem 

into an equivalent mixed-integer linear program (MILP) using the big-M method in 

which they represent the extreme points of the uncertainty set using a set of binary 

variables. In such cases the presence of bilinear and non-convex terms prevents the 

Benders decomposition from guaranteeing the attainment of global optimality. Thus, 

such approaches rely on Monte Carlo sampling [35] in order to assess the quality of the 

achieved solutions. It is also possible to solve approximately the bilinear version of the 

sub-problem through the mountain climbing procedure of Konno [99]. This approach 

provides a lower bound for the master problem. Statistical upper bounds for the master 

problem are obtained using a Monte Carlo simulation. Other studies like [95] [36] [100] 

proposed acceleration techniques by recast the min-max-min problem as a single-level 

MIP problem under assumptions such as defining the uncertainty set as a box set or in 

the case of [100] by eliminating active flow constraints and decomposing time-coupled 

uncertainty budget constraints. 

As presented in this section, several two-stages Robust UC studies have been 

proposed in the literature. However, these studies have been focused mainly on thermal 

power systems; only a few of them have considered hydropower generation as a 

relevant element in the UC problem formulation. Among the ones that consider 

hydropower generation there is Jiang et al. [35], which presented a robust UC 

formulation including pumped-storage hydropower plants under wind uncertainty. Peng 

et al. [101] propose a RO model for a hybrid wind/photovoltaic/hydro/thermal power 

system ensuring robustness in the presence of uncertainties caused by renewable 

energy; This UC problem takes into account a run-of-river hydropower plan and its 

production function considers a constant height and a max/min flow restriction. Chen et 

al [20] also propose a two-stage robust wind-hydrothermal UC model, in which wind 

generation is assumed to be able to vary in a pre-defined uncertainty set. Their 

formulation considers run-of-river hydropower plants with a production capability curve 
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linearized by using binary variables separation and the piecewise linear (PWL) function. 

Soroudi [102] uses a RO model for optimal self-scheduling of a hydrothermal 

generating company considering electricity prices uncertainties. This proposed model is 

suitable for price takers Gencos (generation companies) which seek the optimal 

schedule of their thermal and hydro generating plants for a given operating horizon. 

Chen et al. [103] present a distributionally robust hydrothermal-wind economic dispatch 

where wind power uncertainty is described through an ambiguous PDF set and the 

hydro energy is modeled with the net head and the total water usage fixed.  

Yet, it was identified that there is still a gap in the literature related to Robust 

Optimization problems applied to large scale hydrothermal UC problems considering 

the operation of large water reservoirs for hydropower generation in detail. That is 

taking into account characteristics as water balance with the cascaded effect and a 

production function that considers variable net head and spillage effects. Unlike thermal 

power energy resources, hydropower generation depends on a variety of factors and is 

simultaneously coupled both in time and space [20]. Due to its high flexibility and low 

operation cost, a method for optimizing the hydrothermal UC problem (HTUC) with 

wind power penetration is desired, especially in power systems that are mainly hydro 

like the Brazilian power system with increasing wind energy participation. According to 

[104], for 2027 it is expected a installed capacity of 27GW of wind power in Brazil, 

which would represent 12.7% of the total installed capacity. 

2.2.2. Uncertainty set 

The RO methodology, first presented by Soyster [73], caused concern due to issues 

of over- conservatism for considering the uncertain parameter as the “worst one” since 

it is highly unlikely that stochastic perturbations, in coefficients of an uncertain linear 

inequality, will simultaneously take the “most dangerous” values. One way to tackle 

this issue is by making the uncertainty set smaller and therefore less conservative, 

through the use of ellipsoidal [43] or polyhedral sets [28], [91], uncertainty budgets 

[70], and/or combing stochastic and robust approaches [105]. Different from 

probabilistic scenarios, the uncertainty set modeling method captures the randomness 

nature without any explicit description of the distribution function [34]. This makes the 

uncertainty set a key component of any robust optimization model [79]. The trade-off 
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between the probability of constraint violation and the effect to the objective function of 

the nominal problem, is what [68] calls the price of robustness.  

Robust optimization UC focuses on worst-case optimization where the worst case of 

the constraints is computed over a convex uncertainty set of the parameters, which 

bounds the maximum allowable deviation of the parameters from their nominal values 

[106]. Among the types of uncertainty sets, box sets are simple, easy to derive and 

promise to protect against uncertainties to a high degree [70]. For instance, when 

considering the uncertain parameter 𝑑𝑏𝑢𝑠,𝑡 for power system bus bus at time t, with its 

point estimator 𝑑𝑏𝑢𝑠,𝑡
̅̅ ̅̅ ̅̅ ̅ and its sample deviation 𝑑𝑏𝑢𝑠,𝑡̂; it is possible to use a box (𝐷) for 

𝑑𝑏𝑢𝑠,𝑡 with a confidence interval (𝐶𝑥) [70]; as follow: .  

𝐷: max{0, 𝑑𝑏𝑢𝑠,𝑡
̅̅ ̅̅ ̅̅ ̅ − 𝐶𝑥 𝑑𝑏𝑢𝑠,𝑡̂}  ≤ 𝑑𝑏𝑢𝑠,𝑡

≤  𝑑𝑏𝑢𝑠,𝑡
̅̅ ̅̅ ̅̅ ̅ + 𝐶𝑥 𝑑𝑏𝑢𝑠,𝑡̂   ∀𝑡, ∀𝑏𝑢𝑠 

(2.1) 

However, this kind of set does not consider correlations between adjacent buses or 

consecutive time periods and, thus, tends to be very conservative in general. Its 

conservatism can be reduced by imposing budget constraints. This gives the frequently 

used ellipsoidal and polyhedral uncertainty sets [107]. Ben-Tal and Nemirovski [64] 

proposed the use of  an ellipsoidal uncertainty set that allowed the user to define a much 

more accurate description of the uncertainty factors while maintaining the robustness. 

However, this approach leads to conic quadratic problems which, although convex, are 

more demanding computationally than the earlier linear models of Soyster [73]. 

Advances by Bertsimas and Sim [68] allow an easy control of the degree of 

conservatism with polyhedral uncertainty sets and a user-defined parameter, usually 

called uncertainty budget, that controls the number of uncertainty coefficients that can 

deviate from their nominal value. The main advantage of this technique is that the 

robust model does not increase in complexity compared to its original formulation 

presented by Soyster [73] [36]. An illustrative example of an ellipsoidal and polyhedral 

uncertainty set is presented in Figure 2.1. The figure shows the aggregation effect of 

wind power measurement prediction error.  
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Figure 2.1 Ellipsoidal and Polyhedral uncertainty set models for dispatch periods 1 and 2 

of a wind farm. 

For instance, in the case of demand uncertainty and polyhedral uncertainty sets, 

budget constraints can be added in the form of the summation of the weighted demands 

at all grid buses [34], as depicted by (2.2). 

∑ 𝜋𝑏𝑢𝑠,𝑡 ∙ 𝑑𝑏𝑢𝑠,𝑡  ≤ 𝜋𝑡

𝑏𝑢𝑠

 ∀𝑡 (2.2) 

Where 𝜋𝑡 is the given upper bound for time period t and 𝜋𝑏𝑢𝑠,𝑡 is the weight of the 

demand at bus bus at time t. The above approach can be extended to multidimensional 

cases to make the uncertainty set even smaller [70]. We can consider a two-dimensional 

case and add one more budget constraint such us the summation of the weighted 

demands within the planning horizon (eq. (2.3)). 

∑ 𝜋𝑏𝑢𝑠,𝑡∙𝑑𝑏𝑢𝑠,𝑡  ≤  𝜋𝑜

𝑏𝑢𝑠,𝑡

 ∀𝑡 (2.3) 

Where 𝜋𝑜 is the given upper bound for the planning horizon [34].  

Furthermore, Bertsimas and Sim proposed in [68] a simplified type of budget called 

the cardinality budget 𝐵𝑔𝑡𝑏𝑢𝑠 which represents a polytope type uncertainty set. This 

approach restricts the number of time periods in which the uncertain parameter is 

deviated from its forecasted value at power system bus bus [108]. Considering, for 

instance, a UC problem in which the uncertainty variable is the wind power generation 

in bus b, the cardinality budget can be defined using eq. (2.4): 
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∑ 𝑧𝑏𝑢𝑠,𝑡
+ +  𝑧𝑏𝑢𝑠,𝑡

− ≤  𝐵𝑔𝑡𝑏𝑢𝑠

𝑡

 ∀𝑡, ∀𝑏, 𝑧𝑏𝑢𝑠,𝑡 ∈ {0,1}   (2.4) 

where 𝑧𝑏𝑢𝑠,𝑡
+ = 1 and 𝑧𝑏𝑢𝑠,𝑡

− = 1 represent when wind power output reaches the upper and 

lower bound, respectively. Therefore, the cardinality budget (𝐵𝑔𝑡𝑏𝑢𝑠) limits the total 

number of periods in which wind energy differs from its forecasted value, i.e., if 

𝐵𝑔𝑡𝑏𝑢𝑠 = 0 the wind energy fluctuation at bus b is assumed to be small and the power 

injection can be approximated by its forecasted value. If 𝐵𝑔𝑡𝑏𝑢𝑠 = 2, for instance, 

significant fluctuations of wind power output are assumed to occur in no more than two-

time intervals at bus bus. An illustrative example (considering only one bus) of the 

polytope uncertainty set with cardinality budget 𝐵𝑔𝑡 is presented in Figure 2.2. It 

presents the set of combinations a wind farm power output can deviates from its 

forecasted value considering the uncertainty budget presented in eq. (2.5). 

𝑧𝑡 = |𝑧𝑡
+| +  |𝑧𝑡

− |  ≤  𝐵𝑔𝑡     𝑡 ∈ {1,2,3};  𝑧𝑡
+ ∈ {0,1}; 𝑧𝑡

− ∈ {−1,0} (2.5) 

 

Figure 2.2 Set of worst-case scenarios for a wind farm with T=3. 

According to the formulation and mathematical proofs presented by Bertsimas and 

Sim [68], the consideration of the extreme points of the uncertain parameter guarantee 

feasible and bounded solutions for all realization of 𝑧𝑏𝑢𝑠,𝑡 over 𝐵𝑔𝑡𝑏𝑢𝑠 ∈ [0, |𝑇|]. 

Additionally, the budget constraint defined by (2.4) can guarantee that the optimal 

solution is feasible with high probability, under any realization of the model of data 

uncertainty, as a function of the uncertainty budget 𝐵𝑔𝑡𝑏𝑢𝑠. Therefore, 𝐵𝑔𝑡𝑏𝑢𝑠 is the 

Vertex for budget Bgt = 2

+ Vertex for budget Bgt = 3
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parameter that controls the trade-off between the probability of constraint violation and 

the effect of the Robust approach on the objective function of the nominal problem. In 

[68] it is show that for an uncertain parameter 𝑧𝑡 having a discrete probability 

distribution: Pr(𝑧𝑡 = 1) = 1/2 and Pr(𝑧𝑡 = −1) = 1/2 ∀𝑡 the relation between 𝐵𝑔𝑡𝑏𝑢𝑠 

and the probability of feasible solution is given by: 

𝐵𝑔𝑡𝑏𝑢𝑠 = θ√𝑛. (2.6) 

Where n represents the number of random variables and Φ(θ) is the cumulative 

distribution function of a standard normal. For instance, the UC Robust optimal solution 

of a problem with 24 uncertain variables (𝑛) is feasible with probability approximately 

greater than 95% if the cardinality uncertainty budget 𝐵𝑔𝑡𝑏𝑢𝑠 exceeds the value of 8. 

An example of a possible worst-case scenario considering 𝐵𝑔𝑡𝑏𝑢𝑠 = 8 for a wind farm 

in bus bus is presented in Figure 2.3. Alternative, the numerical value for the 

uncertainty budget parameter can also be defined by the central-limit theorem or 

Chebyshev inequality [109] [20]. 

 

Figure 2.3 Example of a worst-case scenario for a wind farm. 

It can be observed from Figure 2.2 and Figure 2.3 that the budget parameter (𝐵𝑔𝑡𝑏𝑢𝑠) 

is used to adjust the conservatism of the system. Due to its simplicity and intuitiveness, 

this thesis uses a polyhedral uncertainty set based on a box set definition as presented in 

eq. (2.1) and an uncertainty budget based on eq. (2.4) (see Section 4.1.1). 

Due to the challenge that is to capture the correlational structure of uncertain 

parameters, most of the existing literature considers static uncertainty sets where 

temporal and spatial correlations are not systematically represented [80], [110]. 
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However, some important efforts have been undertaken to improve the uncertainty set 

definition. In [89], nonparametric correlations between nodal demands were accounted 

for. In [111], state-space representable uncertainty sets were considered. In [110], the 

idea of dynamic uncertainty sets is proposed to capture temporal and spatial correlations 

in wind speeds. In [112] is proposed a two-stage robust UC method that takes into 

account a  polyhedral uncertain set that describe the spatiotemporal correlation of 

uncertainty prediction error. In [109] the temporal correlation of continuous 

uncertainties (wind power output and load) and discrete characteristics of the uncertain 

set N-k fault are also considered. In [80], it was developed a data-driven approach to 

construct dynamic uncertainty sets for capturing joint temporal and spatial correlations 

of multiple wind and solar farms, including a critical enhancement to reduce the 

dimensionality of these sets. In dynamic uncertainty sets the uncertainty budget can be 

related with the variable representing a random vector with uncorrelated components 

over time and space [80]. 

A more recent approach proposed to merge the ideas of Stochastic UC (SUC) with 

Robust UC (RUC), the resulting formulations are called Hybrid Unit Commitment 

(HUC) and aim at delivering low-cost solutions that can guarantee system reliability 

[107], [113]. In literature, the term HUC is ambiguous since various and essentially 

different hybrid formulations can be found. Zhao and Guan [105] present the so-called 

unified UC in which the expected operating costs from the SUC and the worst-case 

operating costs from the RUC are taken into consideration in the objective function by a 

user-defined weight factor. The main challenge resides in finding a proper weight term 

to balance the cost terms; the weight term should be determined heuristically in order to 

avoid sub-optimal results. 

Distributionally robust UC formulations [84] have also been presented as a HUC. 

This approach can be divided into two broad subgroups: (i) robust optimization directly 

on the probability distributions [114] [94]: in which the probability distribution that 

models the uncertainties is chosen as a family of possible distributions, commonly 

referred to as ambiguity set, and in a second stage the expected cost under the worst-

case distribution within the ambiguity set is minimized, and (ii) robust optimization 

using moment information [93] [115]: where the method is data-driven in the sense that 

no prior knowledge about the probability distribution of the uncertainties is needed and 
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the historical data is directly incorporated in the solution process. The more historical 

data is available, the less conservative the solution is.  

Another option to reduce the over conservatism of RO is to, instead of using a single 

convex set for the uncertainty set, construct a group of smaller sets 𝐷 = 𝐷1 ∪ 𝐷2 ∪ 𝐷3 

as described by [70]. This uncertainty set can be constructed based on the different 

possible scenarios and it could be much less conservative, while maintaining the same 

level of robustness. The so-called Robust Stochastic UC [116] [107] [117] approach, 

also presented as a HUC, relies on partitioning the uncertainty set into several subsets. 

By varying the number of partitions, the focus of this hybrid formulation can intuitively 

be shifted more towards reliability (Robust UC) or cost-efficiency (Stochastic UC), 

based upon preferences. However, practical applications with HUC approaches are 

restricted since they can be very complex and suffer from high computational costs. 
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Chapter 3 

3. Deterministic Hydrothermal Unit 

Commitment Model 

The UC problem is a short-term optimization model that seeks to translate the 

complexity associated with the dispatch of electrical power systems into computational 

language through inequalities that model operational restrictions. Due to the complexity 

and large-scale of national/regional power systems, the solution of this problem tends to 

be highly computational resource consuming. Pereira et al. [23] addresses the UC 

problem of an electricity system supported mainly by hydro, thermal and wind power 

plants as a binary mixed integer non-linear optimization model. In Pereira et al. [31] it is 

proposed a simplified approach for the thermal power units modelling, that uses  

quadratic penalty functions instead of on/off binary variables. Miranda et al, [19], [32], 

Oliveira et al. [118] and Soria et. Al [33] presented technical, social and environmental 

restrictions, for hydro and thermal power plants in Brazil, that should be considered 

when modeling Brazilian power system. These previous works inspired the formulation 

described in this chapter.  

This Chapter describes the problem formulation of a deterministic Hydrothermal 

Unit Commitment (HTUC) model with renewable energy as a minimization cost 

problem. The proposed model is a mixed integer linear programming problem (MILP), 

programed in GAMS and solved with CPLEX, that aims to minimize the scheduling 

cost (i.e., costs for startup/shutdown) and the operating cost of both thermal and 

hydropower plants. This model is subjected to operational unit constraints and system-

wide constraints. This model is named STORM (Short-Term power system OpeRation 

Model) in the following parts of this thesis. The definition of the sets, parameters and 

variables used in the developed formulation is listed from Table I-1 to Table I-3. 
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3.1. Objective function  

The primary objective of STORM is to provide optimal utilization of the available 

resources in order to minimize the total operation cost over a scheduling period T, 

subject to hydro and thermal power constraints, as presented in eq.(3.1). 

Min ∑ (∑ 𝑇ℎ𝑒𝑟𝑚𝐶𝑜𝑠𝑡𝑗,𝑡

𝐽

𝑗=1

+  ∑ 𝐻𝑦𝑑𝑟𝑜𝐶𝑜𝑠𝑡ℎ𝑑,𝑡

𝐻𝑑

ℎ𝑑=1

 + ∑ 𝐻𝑅𝑂𝑅𝐶𝑜𝑠𝑡ℎ𝑟,𝑡

𝐻𝑟

ℎ𝑟=1

𝑇

𝑡=1

+ ∑ 𝑃𝑒𝑛𝐶𝑜𝑠𝑡𝑝𝑒𝑛,𝑡

𝑃𝑒𝑛

𝑝𝑒𝑛=1

+ ∑ 𝑁𝐶𝐿𝐶𝑜𝑠𝑡𝑛𝑐𝑙,𝑡

𝑁𝑐𝑙

𝑛𝑐𝑙=1

) 

(3.1) 

The variable 𝑇ℎ𝑒𝑟𝑚𝐶𝑜𝑠𝑡𝑗,𝑡 encompasses the variable Operation and Maintenance 

(O&M) costs, fuel cost (𝜗j,t) and the costs for startup/shutdown for each thermal power 

plant as presented in. eq.(3.2). 

𝑇ℎ𝑒𝑟𝑚𝐶𝑜𝑠𝑡𝑗,𝑡 = 𝐶𝑆𝑑𝑗 ∗ 𝑈𝑂𝑓𝑓𝑗,𝑡 +  𝐶𝑜𝑙𝑑𝑆𝑗 ∗ 𝑈𝑂𝑛𝑗,𝑡 + 𝑈𝑗,𝑡 ∗  𝐼𝑛𝑑𝐵𝑗 +  𝑃𝑡𝑗,𝑡 ∗

(𝐼𝑛𝑑𝐴𝑗 + 𝐶𝑉𝑂𝑀𝑡𝑗)   ∀𝑡, ∀𝑗 
(3.2) 

In practice, the fuel cost (𝜗j,t) is a quadratic function that variates with the 

operational load factor at a given time. However, to simplify the model, it was 

approximated as a linear curve presented in eq. (3.3) and it is already included in 

eq.(3.2). 

𝜗j,t = 𝑈𝑗,𝑡 ∗  𝐼𝑛𝑑𝐵𝑗 +  𝑃𝑡𝑗,𝑡 ∗ 𝐼𝑛𝑑𝐴𝑗    ∀𝑡, ∀𝑗 (3.3) 

The coefficient values of the fuel curve are shown in Appendix A; these coefficients 

are based on typical data of thermal power technologies. STORM considers five general 

thermal power technologies: i) Open cycle gas turbine; ii) Combined cycle gas turbine, 

iii) Coal/Biomass steam turbine, iv) Internal combustion generator and v) Nuclear 

power reactor. For the last one, this dispatch model does not consider the costs for 

startup/shutdown, under the premise that, due to the great inertia of this technology, it 

will take longer than a day to turn off/on. In other words, the nuclear power plants will 

be always online for the scheduling period (24 hours). The model also considers 
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“penalty” thermal generation plants to represent energy deficit and thus avoid infeasible 

cases; this generation plant is highly flexible and very expensive.  

The operation cost of nuclear power plants (𝑁𝐶𝐿𝐶𝑜𝑠𝑡𝑛𝑐𝑙,𝑡) and penalty plants 

(𝑃𝑒𝑛𝐶𝑜𝑠𝑡𝑝𝑒𝑛,𝑡) is represented by an equivalent parameter for fuel and O&M costs as 

presented in eq. (3.4)- (3.5), respectively. 

𝑁𝐶𝐿𝐶𝑜𝑠𝑡𝑛𝑐𝑙,𝑡 = 𝑃𝑛𝑐𝑙𝑛𝑐𝑙,𝑡 ∗ 𝐶𝑂𝑉𝐹   ∀𝑛𝑐𝑙, ∀𝑡 (3.4) 

𝑃𝑒𝑛𝐶𝑜𝑠𝑡𝑝𝑒𝑛,𝑡 = 𝐺𝑒𝑛𝑃𝑒𝑛𝑝𝑒𝑛,𝑡 ∗ 𝐶𝑃𝑒𝑛   ∀𝑝𝑒𝑛, ∀𝑡 (3.5) 

The hydropower operation cost (for units with reservoir, 𝐻𝑦𝑑𝑟𝑜𝐶𝑜𝑠𝑡ℎ𝑑,𝑡) is more 

complex to define. Hydrothermal power systems with significant hydropower 

generation units use long term operation models, such as Newave [119] to provide the 

operation planning of water resources that minimizes the total operation cost (future 

cost + immediate cost) over the simulated period. To achieve this objective, decisions 

about how much energy should be generated by hydroelectric and consequently by 

thermoelectric power plants in the long and medium term are made. In this context, the 

immediate cost refers to the decisions taken in the present (days or weeks) and the 

future cost for those to be adopted in the future (months or years).  In predominantly 

hydroelectric systems, the immediate and future costs are time dependent; i.e. the future 

cost curve is a consequence of the decisions taken in the present. For example, an empty 

water reservoir (due to large amount of hydro energy generation) means that in the 

future it will be necessary to use significant thermal power energy to meet the demand 

and, therefore, the future cost will be high. 

Consequently, HTUC problems tend to use a future cost curve to estimate a “cost” 

for the water stored in reservoirs. However, finding a future cost curve for a large 

hydrothermal power system with several water reservoirs can be challenging since it is 

usually described as a multi-dimensional curve [119]. Therefore, this thesis uses a 

simplified form to represent the water value for the HTUC model in which the 

parameter Cwater considers the productivity of each plant and electrical energy price, as 

shown in eq. (3.8). For the case study presented in Section 5.1, a sensibility analysis 

with different energy prices (𝑃𝐿𝐷ℎ𝑑) was made in order to better represent the value of 

water, considering Brazilian power dispatch characteristics. For hydropower plants in 

cascade, the accumulated productivity is considered. This gives higher water values for 
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the stored water in upstream reservoirs. The variable Operation and Management 

(O&M) cost for hydropower plants is also considered for both hydropower plants with 

reservoir (eq.(3.6)) and run-of-river power plants (eq. (3.7)) 

𝐻𝑦𝑑𝑟𝑜𝐶𝑜𝑠𝑡ℎ𝑑,𝑡 =  −𝐷𝑒𝑙𝑡𝑎𝑉𝑜𝑙ℎ𝑑 ∗ 𝐶𝑊𝑎𝑡𝑒𝑟ℎ𝑑 + 𝑃ℎ𝑑ℎ𝑑,𝑡 ∗ 𝐶𝑉𝑂𝑀𝑑𝐸𝑞 (3.6) 

𝐻𝑅𝑂𝑅𝐶𝑜𝑠𝑡ℎ𝑟,𝑡 = 𝑇𝑢𝑟𝑏𝑅𝑂𝑅ℎ𝑟,𝑡 ∗ 𝑅𝑜𝑅𝐶𝑜𝑠𝑡ℎ𝑟   (3.7) 

𝐶𝑊𝑎𝑡𝑒𝑟ℎ𝑑 [$
ℎ𝑚3⁄ ] =

1𝑥106

3600
∗ 𝑃𝑟𝑜𝑑𝑢𝑡ℎ𝑑 [

𝑀𝑊

𝑚3 𝑠⁄
] ∗ 𝑃𝐿𝐷ℎ𝑑 [$

𝑀𝑊ℎ⁄ ] 
(3.8) 

The final form of the objective function is presented in eq. (3.9). 

Min
 U, Uon, Uoff, Pt,

TurbWat, TurbROR,
Pncl, GenPen

∑ (∑{𝐶𝑆𝑑𝑗 ∗ 𝑈𝑂𝑓𝑓𝑗,𝑡 + 𝐶𝑜𝑙𝑑𝑆𝑗 ∗ 𝑈𝑂𝑛𝑗,𝑡 + 𝑈𝑗,𝑡 ∗  𝐼𝑛𝑑𝐵𝑗

𝐽

𝑗=1

𝑇

𝑡=1

+  𝑃𝑡𝑗,𝑡 ∗ (𝐼𝑛𝑑𝐴𝑗 + 𝐶𝑉𝑂𝑀𝑡𝑗)}

+  ∑ {−𝐷𝑒𝑙𝑡𝑎𝑉𝑜𝑙ℎ𝑑 ∗ 𝐶𝑊𝑎𝑡𝑒𝑟ℎ𝑑 + 𝑃ℎ𝑑ℎ𝑑,𝑡 ∗ 𝐶𝑉𝑂𝑀𝑑𝐸𝑞}

𝐻𝑑

ℎ𝑑=1

 

+ ∑ {𝑇𝑢𝑟𝑏𝑅𝑂𝑅ℎ𝑟,𝑡 ∗ 𝑅𝑜𝑅𝐶𝑜𝑠𝑡ℎ𝑟} 

𝐻𝑟

ℎ𝑟=1

+ ∑ 𝐺𝑒𝑛𝑃𝑒𝑛𝑝𝑒𝑛,𝑡 ∗ 𝐶𝑃𝑒𝑛

𝑃𝑒𝑛

𝑝𝑒𝑛=1

+ ∑ 𝑃𝑛𝑐𝑙𝑛𝑐𝑙,𝑡 ∗ 𝐶𝑂𝑉𝐹

𝑁𝑐𝑙

𝑛𝑐𝑙=1

) 

(3.9) 

The variable 𝐷𝑒𝑙𝑡𝑎𝑉𝑜𝑙ℎ𝑑 used in eq (3.6), eq. (3.9) and defined in eq. (3.10) is the 

difference between the initial reservoir volume and the reservoir volume at the end of 

the simulation period. It can be understood as an approximate value of the turbined 

outflow.  

𝐷𝑒𝑙𝑡𝑎𝑉𝑜𝑙ℎ𝑑 = 𝑅𝑠𝑟𝑣ℎ𝑑,𝑇 − 𝐼𝑛𝑖𝑡𝑉𝑎𝑙ℎ𝑑 (3.10) 
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3.2. Hydrothermal UC problem constraints  

The adopted set of constraints for the HTUC problem includes constraints derived 

from physical processes, demand requirements and capacity limitations. These 

constraints are inequalities that impose conditions to the model formulation. 

For instance, thermal power plants at full power are able only to decrease power, as 

well as plants out of operation require a minimum time to reach the nominal power 

(operative ramp) and minimum time online once started up. On the other hand, the 

power plant technology and its operational costs need to be considered in UC problems, 

since it indicates in which power stage a specific power plant is more likely to be 

(based, mi-merit or peak). For hydropower plants, specific operational guidelines such 

as flood maintenance in rivers for environmental restrictions or for domestic use, 

reservoirs operational limits, outflow requirements for cascade operation and spillage 

effects are strict delimiters of their flexibility capacity. Renewable and variable energy 

may increase system operation costs since fluctuations in wind and sun energy-outputs 

need to be balanced by conventional power units, and in some cases energy curtailment 

is needed. Transmission systems capacity also imposes physical upper bounds in the 

system flexibility, therefore, power flows need to be calculated as accurate possible, to 

avoid over positive renewable energy integration scenarios.  

3.2.1. Constraints for thermal power plants 

The binary variables associated with the startup/shutdown status of the thermal 

power plants are defined in eq. (3.11) - (3.13). Equation (3.11) defines when the thermal 

power plant j is turn on, i.e. 𝑈𝑂𝑁𝑗,𝑡 = 1 and eq. (3.12) when the power plant is turn off 

i.e. 𝑈𝑂𝑓𝑓𝑗,𝑡 = 1 . 

−𝑈𝑗,𝑡−1 + 𝑈𝑗,𝑡 − 𝑈𝑂𝑁𝑗,𝑡 ≤  0  ∀𝑡, ∀𝑗 (3.11) 

𝑈𝑗,𝑡−1 − 𝑈𝑗,𝑡 − 𝑈𝑂𝑓𝑓𝑗,𝑡 ≤ 0   ∀𝑡, ∀𝑗 (3.12) 

𝑈𝑗,𝑡 , 𝑈𝑂𝑛𝑗,𝑡 , 𝑈𝑂𝑓𝑓𝑗,𝑡   ∈  {0,1}  and 𝑈𝑗,−1 = 0   ∀𝑗 (3.13) 

Minimum Up and Down time constraints enforce the system feasibility in terms of 

proper technical operation of units. Once a shutdown is verified, the thermal power 

plant (j) must remain off for a certain period (DT) (eq. (3.15)). The same logic applies if 
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a startup happens the power plant must remain online over a certain time (UT) (eq. 

(3.14)).  

𝑈𝑗,𝑡−1 − 𝑈𝑗,𝑡 + 𝑈𝑗,𝑡+𝑢𝑡𝑡 ≤ 1 ∀𝑡, ∀𝑗;   𝑢𝑡𝑡 ∈ {1, … , 𝐷𝑇𝑗} (3.14) 

−𝑈𝑗,𝑡−1 + 𝑈𝑗,𝑡 − 𝑈𝑗,𝑡+𝑢𝑡𝑡 ≤ 0  ∀𝑡, ∀𝑗;   𝑢𝑡𝑡 ∈ {1, … , 𝑈𝑇𝑗} (3.15) 

Power capacity constraints ensure that power plants will not produce more than its 

install capacity (𝑃𝑐𝑎𝑝𝑗) for each hour of the scheduling period. In other words, the 

power output must be equal or less than its nominal value, eq. (3.16). A minimum 

generation value for a stable operation is imposed by eq. (3.17). This minimum value is 

defined according to the technical characteristics of each thermal power technology.  

𝑃𝑡𝑗,𝑡 ≤ 𝑃𝑐𝑎𝑝𝑗 ∗ 𝑈𝑗,𝑡 ∀𝑡, ∀𝑗 (3.16) 

𝑃𝑡𝑗,𝑡 ≥ 𝑃𝑚𝑖𝑛𝑗 ∗ 𝑈𝑗,𝑡  ∀𝑡, ∀𝑗 (3.17) 

Start-up, shut-down and operation ramp constraints are also considered. The 

mathematical representation of the startup/operation ramp is presented in eq. (3.18) and 

the shutdown/ operation ramp constraint is shown in eq. (3.19).  

Start up: 

𝑃𝑡𝑗,𝑡 − 𝑃𝑡𝑗,𝑡−1 ≤ (2 − 𝑈𝑗,𝑡−1 − 𝑈𝑗,𝑡) ∗ 𝑆𝑅𝑎𝑚𝑝𝑗 + (1 + 𝑈𝑗,𝑡−1 − 𝑈𝑗,𝑡)

∗ 𝑅𝑎𝑚𝑝𝑗    ∀𝑗, ∀𝑡 

Shutdown: 

(3.18) 

𝑃𝑡𝑗,𝑡−1 − 𝑃𝑡𝑗,𝑡 ≤ (2 − 𝑈𝑗,𝑡−1 − 𝑈𝑗,𝑡) ∗ 𝑃𝑚𝑖𝑛𝑗 + (1 − 𝑈𝑗,𝑡−1 + 𝑈𝑗,𝑡)

∗ 𝑅𝑎𝑚𝑝𝑗    ∀𝑗, ∀𝑡 
(3.19) 

For nuclear power plants, power capacity (eq.(3.20)), minimum generation value (eq. 

(3.21).) and up/down operation ramp (eq. (3.22) - (3.23)) constraints are considered.  

𝑃𝑛𝑐𝑙𝑛𝑐𝑙,𝑡 ≤ 𝑀𝑎𝑥𝑁𝑐𝑙𝑛𝑐𝑙    ∀𝑡, ∀𝑛𝑐𝑙 (3.20) 

𝑃𝑛𝑐𝑙𝑛𝑐𝑙,𝑡 ≥ 𝑀𝑖𝑛𝑁𝑐𝑙𝑛𝑐𝑙   ∀𝑡, ∀𝑛𝑐𝑙 (3.21) 
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𝑃𝑛𝑐𝑙𝑛𝑐𝑙,𝑡 − 𝑃𝑛𝑐𝑙𝑛𝑐𝑙,𝑡−−1 ≤ 𝑅𝑚𝑝𝑛𝑐𝑙   ∀𝑛𝑐𝑙, ∀𝑡 (3.22) 

𝑃𝑛𝑐𝑙𝑛𝑐𝑙,𝑡−−1 − 𝑃𝑛𝑐𝑙𝑛𝑐𝑙,𝑡 ≤ 𝑅𝑚𝑝𝑛𝑐𝑙   ∀𝑛𝑐𝑙, ∀𝑡 (3.23) 

3.2.2. Hydro production function  

The energy generated by a hydropower plant (ℎ𝑝𝑔) depends on its turbinated 

outflow (𝑞), its design characteristics (represented by both turbine (𝜂𝑡) and generator 

(𝜂𝑔) efficiency factors) and the net water head of its reservoir (ℎ), as shown in eq. 

(3.24). The numerical factor 𝜁 = 9.81𝑥10−3 considers the gravity acceleration, water 

density and the unit conversion factor. The unit of ℎ𝑝𝑔 is MW. 

ℎ𝑝𝑔 = 𝜁𝜂𝑡𝜂𝑔𝑞ℎ (3.24) 

The reservoir net head is given by (3.25). The forebay level ℎ𝑢𝑝 depends on the 

reservoir volume (𝑉ℎ𝑑). The tailrace level ℎ𝑑𝑤 is a function of the turbined outflow 

(𝑄ℎ𝑑) of the whole hd plant and, depending on the geography and design of the 

hydropower plant, of the spillage (𝑆ℎ𝑑) as well. The term ℎ𝑙𝑜𝑠𝑠ℎ𝑑
 accounts for penstock 

head losses.  

ℎℎ𝑑   = ℎ𝑢𝑝(𝑉ℎ𝑑) − ℎ𝑑𝑤(𝑄ℎ𝑑, 𝑆ℎ𝑑) − ℎ𝑙𝑜𝑠𝑠ℎ𝑑
 (3.25) 

The expression in eq. (3.26) gives the power generation of a hydropower plant hd 

with xℎ units.  

𝐻𝑃𝐺ℎ𝑑 = ∑ ℎ𝑝𝑔𝑥(𝑞𝑥, 𝑉ℎ𝑑, 𝑄ℎ𝑑, 𝑆ℎ𝑑)

𝑥ℎ

𝑥=1

 (3.26) 

The daily variation of the forebay level has little effect on the energy production of 

hydropower plants with large dams. However, the tailrace level increases with the plant 

discharge; this causes a decrease in the net head and has a negative effect on the power 

plant generation. Consequently, the productivity of a hydropower plant MW/(m3/s)) 

decreases with the turbinated outflow, leading to a concave behavior. Even more, as 

presented by [24], there are complicating issues when modeling an equivalent 

production curve such as the forbidden zones [120], number of online units and the 

sequence in which the units are turned on/off. These difficulties can lead to a production 
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curve with non-convex regions and nonlinearities e.g. discontinuous derivatives at 

operational points where units are switched on.  

In order to alleviate the computational burden, some studies have presented 

approximated models of hydro production functions for the dispatch problem. For 

instance, the nonlinearity is circumvented by assuming a constant net head resulting in a 

piecewise linear curve [121] or in a quadratic curve [40]. Nonetheless, this assumption 

is only adequate for hydropower plants in which their reservoir water levels vary across 

a narrow range. For head dependent reservoirs, the production curve can be 

approximate by a family of piecewise-linear [122], quadratic [123] or piecewise 

quadratic [124] functions. Binary variables are usually used to determine which linear 

or quadratic part is active. In [24] the production function is proposed as a four-

dimensional piecewise linear model that considers head variation in a single 

multivariate linear function of turbinated outflow, storage, and spillage.  

Other characteristics such as the turbine efficiency as a function of net head and 

turbinated outflow, the generator efficiency based on the generation output and the 

penstock head losses considering the turbinated outflow are also important in hydro UC 

problems [125] [126]. Yet, there are limitations for considering such restrictions in the 

unit commitment problem due to the computational burden involved with highly 

detailed hydropower modeling. Therefore, it becomes important to use a hydropower 

model that finds a balance between an accurate representation of water head variation 

and low computational times. 

This thesis uses the 4-D piecewise linear model proposed by [24] for the hydro 

generation curve. This approach has the advantage of using a single function that 

considers the main elements that cause head variation in hydro plants: storage, 

turbinated outflow and spillage. The procedure first finds the hyperplanes that define the 

convex hull of the region below the Hydro Production Function (HPF) considering zero 

spillage, which lead to an initial 3-D piecewise linear approximation. Then the spillage 

effect is included using a secant approximation. For this approach the following 

assumptions were made: 

• A constant turbine-generator efficiency  

• Penstock losses are calculated as a percentage of the power output 

• Forbidden zones are neglected 
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• The forebay level (ℎ𝑢𝑝) is a fourth-degree polynomial function of the storage 

• The tailrace level (ℎ𝑑𝑤) is a fourth-degree polynomial function of turbinated 

outflow and spillage.  

• The productivity of each plant, defined as the water-power conversion rate per 

unit of head ((MW/(m3/s))/m), is considered known.  

• Storage, turbinated outflow, spillage and generation max/min limits are all 

known values. 

The steps needed to reach the 4-D piecewise linear model for each hydro power 

generation plant include: 

a) Definition of the Grid for the Approximation 

To perform this first step a number of points, of the 𝑉𝑥𝑄 plane, are chosen. The size 

of the grid (number of points and their distribution) depends on the required precision 

for the model and the performance of the real plant production function. For each pair 

of points (𝑉ℎ𝑑, 𝑄ℎ𝑑), the power generation 𝐻𝑃𝐺ℎ𝑑 is calculated by the equation (3.27), 

considering 𝑆 = 0. This provides a set of points (𝑉ℎ𝑑
̅̅ ̅̅̅, 𝑄ℎ𝑑

̅̅ ̅̅ ̅, 𝐻𝑃𝐺ℎ𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅) in the 3-D space. 

The maximum turbinable outflow was defined as a curve dependent of the reservoir net 

head using the information provided by the software HydroExpert [127]. Figure 3.1 

presents an example of the resulting grid for Boa Esperança hydropower plant using a 

5x5 size grid. 

𝐻𝑃𝐺ℎ𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 ∗ 𝑄ℎ𝑑

̅̅ ̅̅ ̅ ∗ ℎℎ𝑑
̅̅ ̅̅ ̅ (3.27) 

 

Figure 3.1 A 5x5 size grid of the 𝑉𝑥𝑄𝑥𝐻𝑃𝐺 plane. 

Outflow 
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b) Determination of the coefficients for the HPF model without considering 

spillage 

Once the set of points (𝑉ℎ𝑑
̅̅ ̅̅̅, 𝑄ℎ𝑑

̅̅ ̅̅ ̅, 𝐻𝑃𝐺ℎ𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅) is defined, the 3-D convex hull (convex 

envelope) of the grid can be calculated. To do this, this thesis used the MATLAB 

function Convhull. The outputs of this function are the vertices of the triangular planes 

that make up the convex hull. Next, it was established, for each plane 𝑃̃ with 

vertices (𝑝1, 𝑝2, 𝑝3), the equation that describes it, which has the form of  𝐻𝐺 = 𝛾𝑜 +

𝛾𝑄𝑄 + 𝛾𝑉𝑉. The shape of the convexified region below Boa Esperança hydropower 

production function (HPF) curve is illustrated in Figure 3.2. The equations of the 𝐾ℎ𝑑 

hyperplanes compose the initial approximated HPF model, given by eq. (3.28). 

𝐻𝑃𝐹ℎ𝑑  𝑝𝑙𝑛′(𝑉ℎ𝑑, 𝑄ℎ𝑑) = 𝛾𝑜
ℎ𝑑,𝑝𝑙𝑛 + 𝛾𝑉

ℎ𝑑,𝑝𝑙𝑛𝑉ℎ𝑑 + 𝛾𝑄
ℎ𝑑,𝑝𝑙𝑛𝑄ℎ𝑑    𝑝𝑙𝑛 = 1, … , 𝑘 (3.28) 

 

Figure 3.2 The convexified region below a hydropower production function curve. 

c) Adding the spillage effect to the HPF 

The shape of the production function for hydropower plants tends to be, for a fixed 

pair (𝑉ℎ𝑑, 𝑄ℎ𝑑),  non-convex in the spillage dimension [24]. This behavior indicates that 

the piecewise linear approximation made in the volume and inflow dimensions would 

not be appropriate for the spillage dimension. Instead, a secant approximation is used to 

calculate the spillage coefficient. This secant approximation minimizes the average 

square error between the HPG (eq.(3.27)) and the HPF (eq. (3.28)) for 𝑀 points 

between (𝑉ℎ𝑑
𝑝𝑙𝑛̇

, 𝑄ℎ𝑑
𝑝𝑙𝑛̇

, 0) and (𝑉ℎ𝑑
𝑝𝑙𝑛̇

, 𝑄ℎ𝑑
𝑝𝑙𝑛̇

, 𝑆𝑟𝑒𝑓); where 𝑉ℎ𝑑
𝑝𝑙𝑛̇

, 𝑄ℎ𝑑
𝑝𝑙𝑛̇

 are the centroid’s 

Outflow 
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coordinates of each plane (pln). The spillage coefficient γS
hd,pln

 is calculated for each 

plane as shown by eq. (3.29). The value 𝑆𝑟𝑒𝑓
ℎ𝑑  is based on the plant spillage historical 

data, and it should not be too high, as more accurate representation is preferred for small 

values of spillage. 

𝛾𝑆
ℎ𝑑,𝑝𝑙𝑛 ∈  arg min

𝛾
[𝑀 ∑ (𝐻𝑃𝐺ℎ𝑑((𝑉ℎ𝑑

̇ , 𝑄ℎ𝑑
̇ , 𝑆𝑚)

𝑀

𝑚=1

− (𝐻𝑃𝐹ℎ𝑑
𝑝𝑙𝑛′

((𝑉ℎ𝑑
̇ , 𝑄ℎ𝑑

̇ ) + 𝛾𝑆𝑚))
2

] 

(3.29) 

with 

𝑆𝑚 = (
𝑚

𝑀
) 𝑆𝑟𝑒𝑓

ℎ𝑑  (3.30) 

The final form of the approximated HPF is presented in eq. (3.31) and an example of 

evaluation of this 4-D piece-wise function over the volume and inflow axes, considering 

the case of the Boa Esperança power generation plant is illustrated in Figure 3.3. 

𝐻𝑃𝐹ℎ𝑑
𝑝𝑙𝑛(𝑉ℎ𝑑, 𝑄ℎ𝑑, 𝑆ℎ𝑑)

= 𝛾𝑜
ℎ𝑑,𝑝𝑙𝑛 + 𝛾𝑉

ℎ𝑑,𝑝𝑙𝑛𝑉ℎ𝑑 + 𝛾𝑄
ℎ𝑑,𝑝𝑙𝑛𝑄ℎ𝑑 + 𝛾𝑆

ℎ𝑑,𝑝𝑙𝑛𝑆ℎ𝑑    

 𝑝𝑙𝑛 = 1, … , 𝐾ℎ𝑑 

(3.31) 
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Figure 3.3 - HPF for a hydropower plant with reservoir. 

All hydropower plants have a reservoir, even the ones called run-of-river plants have 

a small reservoir, and therefore this analysis was applied for all hydro power plants. 

However, since the reservoir volume does not impact significantly the production 

function of run-of-river plants, the representation of these plants can be simplified by 

establishing the volume as a fixed value. Therefore, for the HPF definition of run-of-

river plants it was first considered that the reservoir volume could vary within 

[ 𝑀𝑎𝑥𝐿𝑒𝑣𝑒𝑙ℎ𝑟(%), 𝑀𝑖𝑛𝑙𝑒𝑣𝑒𝑙ℎ𝑟(%)] of the nominal value and once the coefficients of the 

HPF were defined using the methodology here described, a “cut” was made at 

𝑀𝐵 = (𝑀𝑎𝑥𝐿𝑒𝑣𝑒𝑙ℎ𝑟 + 𝑀𝑖𝑛𝑙𝑒𝑣𝑒𝑙ℎ𝑟) 2⁄  (%) of the nominal reservoir volume (𝑉ℎ𝑟
𝑛𝑜𝑚). 

The HPF for run-of-river plants is presented in eq. (3.32). It depends only of the 

turbinated outflow and, in some generation plants, according to the EPE register [128], 

of the spillage.  

𝐻𝑃𝐹ℎ𝑟
𝑝𝑙𝑛𝑅(𝑄ℎ𝑟 , 𝑆ℎ𝑟)

=  𝛾𝑜
ℎ𝑟,𝑝𝑙𝑛𝑅 + 𝑀𝐵 ∗ 𝑉ℎ𝑟

𝑛𝑜𝑚 ∗ 𝛾𝑉
ℎ𝑟,𝑝𝑙𝑛𝑅 +  𝛾𝑄

ℎ𝑟,𝑝𝑙𝑛𝑅𝑄ℎ𝑟

+  𝛾𝑆
ℎ𝑟,𝑝𝑙𝑛𝑅𝑆ℎ𝑟   

𝑝𝑙𝑛𝑅 = 1, … , 𝐾ℎ𝑟 

(3.32) 

Outflow [m³/s] 
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The mathematical formulation of the HPF model to be used in hydrothermal UC 

problem for reservoir and run-of-river plants is shown in eq.(3.33) and eq. (3.34), 

respectively. The coefficient values of the production function for each hydropower 

plant considered in the case studies of this thesis are shown in appendix D. 

𝐻𝑃𝐹ℎ𝑑
𝑡 (𝑉ℎ𝑑, 𝑄ℎ𝑑, 𝑆ℎ𝑑)  

≤ 𝛾𝑜
ℎ𝑑,𝑝𝑙𝑛 + 𝛾𝑉

ℎ𝑑,𝑝𝑙𝑛 ∗ 𝑉ℎ𝑑
𝑡−1 +  𝛾𝑄

ℎ𝑑,𝑝𝑙𝑛𝑄ℎ𝑑
𝑡

+  𝛾𝑆
ℎ𝑑,𝑝𝑙𝑛𝑆ℎ𝑑

𝑡    ∀𝑡, ∀ℎ𝑑, ∀𝑝𝑙𝑛  

(3.33) 

𝐻𝑃𝐹ℎ𝑟
𝑡 (𝑄ℎ𝑟, 𝑆ℎ𝑟)  

≤ 𝛾𝑜
ℎ𝑟,𝑝𝑙𝑛𝑅 + 𝛾𝑉

ℎ𝑟,𝑝𝑙𝑛𝑅 ∗ 𝑀𝐵 ∗ 𝑉ℎ𝑟
𝑛𝑜𝑚 +  𝛾𝑄

ℎ𝑟,𝑝𝑙𝑛𝑅𝑄ℎ𝑟
𝑡

+  𝛾𝑆
ℎ𝑟,𝑝𝑙𝑛𝑅𝑆ℎ𝑟

𝑡    ∀𝑡, ∀ℎ𝑟, ∀𝑝𝑙𝑛𝑅  

(3.34) 

3.2.3. Constraints for hydroelectric power plants 

Hydroelectric power plants are divided in two main categories. Hydro power plants 

with regularization capacity, here called as units with reservoir (Hydro-Res), and Hydro 

power plants without regularization capacity, here called as run-of-river units (Hydro –

ROR). The hydropower production functions for Hydro-Res (hd plants) and for Hydro –

ROR (hr plants) are considered and presented in equations (3.35) and (3.36), 

respectively. The methodology to define the production function coefficients is 

presented in Section 3.2.2  

𝑃ℎ𝑑ℎ𝑑,𝑡 ≤  [𝛾𝑜
ℎ𝑑,𝑝𝑙𝑛 + 𝑇𝑢𝑟𝑏𝑊𝑎𝑡ℎ𝑑,𝑡 ∗ γQ

hd,pln
+ 𝑅𝑠𝑟𝑣ℎ𝑑,𝑡−1 ∗ γV

hd,pln

+ 𝑠𝑝𝑖𝑙ℎ𝑑,𝑡 ∗ 𝛾𝑆
ℎ𝑑,𝑝𝑙𝑛]  ∀𝑡, ∀ℎ𝑑, ∀𝑝𝑙𝑛  

(3.35) 

𝑃𝑟𝑜𝑟ℎ𝑟,𝑡 ≤  𝛾𝑜
ℎ𝑟,𝑝𝑙𝑛𝑅 + 𝑇𝑢𝑟𝑏𝑅𝑂𝑅ℎ𝑟,𝑡 ∗ 𝛾𝑄

ℎ𝑟,𝑝𝑛𝑙𝑅 + 𝑆𝑝𝑖𝑙𝑅𝑂𝑅ℎ𝑟,𝑡

∗ 𝛾𝑆
ℎ𝑟,𝑝𝑛𝑙𝑅  ∀𝑡, ∀ℎ𝑟, ∀𝑝𝑙𝑛𝑅  

(3.36) 

Power capacity constraints were also considered for Hydro-Res (eq.(3.37)) and for 

Hydro-ROR (eq.(3.38)). Additionally, capacity constraints were also imposed to 

hydraulic turbines through eq. (3.41) - (3.40), which represent the maximum allowed 

turbinated outflow for hd and hr power plants, respectively.  
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𝑃ℎ𝑑ℎ𝑑,𝑡 ≤ 𝑃ℎ𝑑𝑀𝑎𝑥ℎ𝑑 ∗ 𝑉ℎℎ𝑑,𝑡   ∀𝑡, ∀ℎ𝑑 (3.37) 

𝑃𝑟𝑜𝑟ℎ𝑟,𝑡 ≤ 𝑃𝑚𝑎𝑥𝑅𝑂𝑅ℎ𝑟    ∀𝑡, ∀ℎ𝑟 (3.38) 

𝑇𝑢𝑟𝑏𝑊𝑎𝑡ℎ𝑑,𝑡 ≤ 𝑄𝑚𝑎𝑥ℎ𝑑   ∀𝑡, ∀ℎ𝑑 (3.39) 

𝑇𝑢𝑟𝑏𝑅𝑂𝑅ℎ𝑟,𝑡 ≤ 𝑄𝑚𝑎𝑥𝑅𝑂𝑅ℎ𝑟   ∀𝑡, ∀ℎ𝑟 (3.40) 

Restrictions of minimum operational power level and minimum outflow (which is 

met by turbinated outflow or by spillage) are considered using eq. (3.41) and eq. (3.42). 

Minimum outflow restrictions are relevant to ensure navigability and water use in urban 

areas and agricultural projects, and in the case of generation in cascade mode it can play 

a central role in flow regulation of generation plants downstream [19]. 

𝑃ℎ𝑑ℎ𝑑,𝑡 ≥ 𝑃ℎ𝑑𝑀𝑖𝑛ℎ𝑑 ∗ 𝑉ℎℎ𝑑,𝑡   ∀𝑡, ∀ℎ𝑑 (3.41) 

𝑇𝑢𝑟𝑏𝑊𝑎𝑡ℎ𝑑,𝑡 + 𝑆𝑝𝑖𝑙ℎ𝑑,𝑡 ≥ 𝑄𝑚𝑖𝑛ℎ𝑑   ∀𝑡, ∀ℎ𝑑 (3.42) 

Upper bounds for spillage in hydro-Res (hd) plants are imposed as a security 

measure (eq. (3.43)). 

𝑆𝑝𝑖𝑙ℎ𝑑,𝑡 ≤ 𝑆𝑝𝑖𝑙𝑀𝑎𝑥ℎ𝑑   ∀𝑡, ∀ℎ𝑑  (3.43) 

For hydro-ROR (hr) plants the spillage restriction is defined by eq. (3.44) 

𝑆𝑝𝑖𝑙𝑙𝑅𝑂𝑅ℎ𝑟,𝑡 = 𝑉𝑎𝑧𝑎𝑜𝐼𝑛𝐸𝑞ℎ𝑟,𝑡 − 𝑇𝑢𝑟𝑏𝑅𝑂𝑅ℎ𝑟,𝑡  ∀𝑡, ∀ℎ𝑟  (3.44) 

Upper and lower bounds for volume limits in water reservoir are also considered 

through eq. (3.45) - (3.46). The initial volume value of the reservoir is known data as 

indicated by eq. (3.47). 

𝑅𝑠𝑟𝑣ℎ𝑑,𝑡 ≤ 𝑀𝑎𝑥𝐿𝑒𝑣𝑒𝑙ℎ𝑑     ∀𝑡, ∀ℎ𝑑  (3.45) 

𝑅𝑠𝑟𝑣ℎ𝑑,𝑡 ≥  𝑀𝑖𝑛𝐿𝑒𝑣𝑒𝑙ℎ𝑑     ∀𝑡, ∀ℎ𝑑  (3.46) 

𝑅𝑠𝑟𝑣ℎ𝑑,−1 = 𝐼𝑛𝑖𝑡𝑉𝑎𝑙ℎ𝑑 (3.47) 
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The coming inflow for each hydropower plant (hT is the set that considers hd and hr 

plants) is calculated in eq (3.48). This formulation considers the cascade effect, i.e. the 

inflow of plant hT considers its incremental flow plus spillage and/or turbinated outflow 

from the upstream hydropower plants considering the travel time of each power plant. 

𝑉𝑎𝑧𝑎𝑜𝐼𝑛𝐸𝑞ℎ𝑇,𝑡

= 𝐼𝑛𝑓𝑙𝑜𝑤ℎ𝑇ℎ𝑇,𝑡

+ ∑ [𝑇𝑢𝑟𝑏𝑊𝑎𝑡ℎ𝑑,𝑡−𝑡𝑣𝑖𝑎𝑔(ℎ𝑇)

∀ℎ𝑑 ∈ 𝑇𝑏𝑙𝐶𝑎𝑠𝑐(ℎ𝑇,ℎ𝑑)

+ 𝑆𝑝𝑖𝑙ℎ𝑑,𝑡−𝑡𝑣𝑖𝑎𝑔(ℎ𝑇)]  

+ ∑ [𝑇𝑢𝑟𝑏𝑅𝑂𝑅ℎ𝑟,𝑡−𝑡𝑣𝑖𝑎𝑔(ℎ𝑇)

∀ℎ𝑟 ∈ 𝑇𝑏𝑙𝐶𝑎𝑠𝑐(ℎ𝑇,ℎ𝑟)

+ 𝑆𝑝𝑖𝑙𝑅𝑂𝑅ℎ𝑟,𝑡−𝑡𝑣𝑖𝑎𝑔(ℎ𝑇)]    ∀𝑡, ∀ℎ𝑇 

(3.48) 

The reservoir water balance equation is presented in equation (3.49). Since the 

simulation period is a day and to simplify the model the water balance does not consider 

evaporation rate or inflow withdrawal due to other uses different from electricity 

generation, it considers the total coming inflow, calculated in eq (3.48). The scalar CF is 

a conversion factor from m3/s to hm3/h equal to 0.0036. 

𝑅𝑠𝑟𝑣ℎ𝑑,𝑡 = 𝑅𝑠𝑟𝑣ℎ𝑑,𝑡−1 + 𝐶𝐹

∗ [𝑉𝑎𝑧𝑎𝑜𝐼𝑛𝐸𝑞ℎ𝑑,𝑡 − 𝑇𝑢𝑟𝑏𝑊𝑎𝑡ℎ𝑑,𝑡 − 𝑆𝑝𝑖𝑙ℎ𝑑,𝑡]   ∀𝑡, ∀ℎ𝑑  
(3.49) 

3.2.4. Transmission system – DC power flow for UC problems 

A power grid can be described by its incidence matrix 𝐴̅ and its admittance matrix 𝑌̅. 

The incidence matrix is a LinesxBuses size matrix that describes the topology of the 

grid; i.e., which lines are connected to which buses; 𝑎𝑙𝑖𝑛𝑒,𝑏𝑢𝑠 = 1 if line line starts at 

bus bus, 𝑎𝑙𝑖𝑛𝑒,𝑏𝑢𝑠 = −1 if line line end at bus bus and 𝑎𝑙𝑖𝑛𝑒,𝑏𝑢𝑠 = 0 if line line is not 

incident to bus bus. The incidence matrix relates the bus parameters (injected current 

𝐼𝑏𝑢𝑠 and voltage 𝑉𝑏𝑢𝑠 at bus bus) with the line parameters (current 𝐼𝑙𝑖𝑛𝑒 flowing through 

transmission line line and voltage drop 𝑉𝑙𝑖𝑛𝑒 over transmission line line).  
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The admittance matrix 𝑌̅ is a busxbus size matrix, that relates the voltages 𝑉𝑏𝑢𝑠 with 

the injected nodal current 𝐼𝑏𝑢𝑠. The admittance matrix is defined by eq. (3.50), where 𝑌̅𝑑 

is the LxL-diagonal matrix with the line admittances on the diagonal (i.e. the primitive 

admittance matrix).  

𝑌̅ = 𝐴 𝑇̅̅ ̅̅ ∙ 𝑌𝑑
̅̅̅ ∙ 𝐴̅  (3.50) 

The most common calculation of static grid flows is the AC power flow. However, 

an AC power flow is computationally heavy within the scope of UC models. The DC 

power flow is a linearized version of the AC power flow with acceptable use of 

computational resources that can be used in UC models. The methodology used in this 

thesis to model the transmission system is based on [130],[131],[132]. 

DC power flow only considers active power flow, assumes perfect voltage support 

and reactive power management, and neglects transmission losses. In summary, the DC 

power flow is based on three assumptions: 

1.  Line resistances are negligible compared to line reactance (𝑅𝑙𝑖𝑛𝑒 ≪ 𝑋𝑙𝑖𝑛𝑒). This 

assumption implies that grid losses are neglected, and line parameters are 

simplified.  

2. The voltage amplitude is equal for all buses (in per unit values) |𝑉𝑏𝑢𝑠|  ≈ 1 𝑝. 𝑢 

3. Voltage angle differences between neighboring buses are small. This assumption 

results in a linearization of the sine and cosine terms in the AC power flow 

equations. 

The active power flow through a lossless transmission line and with the DC power 

flow assumptions is given by eq.(3.51). Where 𝐵𝑑
̅̅̅̅  is the matrix line suceptances (𝑌̅𝑑 

without any conductance term) and 𝛿𝑏𝑢𝑠
̅̅ ̅̅ ̅̅  is the matrix voltage angle of bus bus. 

𝑃𝐿
̅̅ ̅ =  𝐵𝑑

̅̅̅̅  ∙ 𝐴̅ ∙ 𝛿𝑏𝑢𝑠
̅̅ ̅̅ ̅̅  (3.51) 

The nodal active power balance with the DC power flow equation is given by eq. 

(3.52): 

𝑃𝑏𝑢𝑠 =  ∑ 𝐵𝑙𝑖𝑛𝑒(

𝑄

𝛿𝑏𝑢𝑠 −  𝛿𝑞)  

𝑃𝑏𝑢𝑠
̅̅ ̅̅ ̅̅ =  𝐴𝑇̅̅̅̅ ∙ 𝐵𝑑 ̅̅ ̅̅ ∙ 𝐴̅ ∙ 𝛿𝑏𝑢𝑠

̅̅ ̅̅ ̅̅  

(3.52) 
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The positive direction of the active power flow 𝑃𝑙𝑖𝑛𝑒 is from node bus to node q and 

Bline refers to the susceptance of line line between bus bus and bus q. Substituting the 

nodal voltage angle 𝛿𝑏𝑢𝑠 from (3.52) in (3.51) gives the DC power flow equations, 

showed by eq (3.53). 

𝑃𝑙𝑖𝑛𝑒
̅̅ ̅̅ ̅̅ = ((𝐵𝑑

̅̅̅̅  ∙ 𝐴̅) ∙ (𝐴𝑇̅̅̅̅ ∙ 𝐵𝑑
̅̅̅̅  ∙ 𝐴̅)

−1
 ) ∙ 𝑃𝑏𝑢𝑠

̅̅ ̅̅ ̅̅ =  𝑃𝑇𝐷𝐹𝐿𝑥𝑁 ∗ 𝑃𝑏𝑢𝑠
̅̅ ̅̅ ̅̅  (3.53) 

The Power Transfer Distribution Factor (𝑃𝑇𝐷𝐹𝐿𝑥𝐵) describes the linear relationship 

between the power injections in the grid (𝑃𝑏𝑢𝑠) and the active power flows through the 

transmission lines (𝑃𝑙𝑖𝑛𝑒 ). An element of the 𝑃𝑇𝐷𝐹𝐿𝑥𝐵 matrix gives the power flow 

through transmission line line caused by the injection of 1 unit of active power at node 

bus and withdrawal at node q. 

3.2.5. Constraints for the transmission system 

Based on eq. (3.53) the DC power flow and transmission capacity constraints are 

defined in eqs. (3.54) and (3.55). The sum of all nodal injection using the 𝑃𝑇𝐷𝐹𝐿𝑥𝐵 

factor guaranties that the power flow through line l will not be higher than its capacity, 

for both directions of the power flow, positive and negative.  

∑ 𝑃𝑇𝐷𝐹𝑙𝑖𝑛𝑒,𝑏𝑢𝑠

𝐵

𝑏𝑢𝑠=1

{ ∑ 𝑃𝑡𝑗,𝑡

𝑗 ∈Λ𝑗𝑏

+ ∑ 𝑃𝑛𝑐𝑙𝑛𝑐𝑙,𝑡

𝑛𝑐𝑙 ∈ Λ𝑛𝑐𝑙−𝑏

+  𝑃𝑤𝑖𝑛𝑑𝐸𝑞𝑏𝑢𝑠,𝑡

+  𝑃𝑠𝑜𝑙𝑎𝑟𝑏𝑢𝑠,𝑡 +  ∑ 𝐺𝑒𝑛𝑃𝑒𝑛𝑝𝑒𝑛,𝑡

𝑝𝑒𝑛 ∈  Λ𝑝𝑒𝑛−𝑏

+  ∑ 𝑃𝑟𝑜𝑟ℎ𝑟,𝑡

ℎ𝑟  ∈ Λℎ𝑟−𝑏

+ ∑ 𝑃ℎ𝑑ℎ𝑑,𝑡

ℎ𝑑 ∈ Λℎ𝑑−𝑏

+  𝑃𝑝𝑐ℎ𝑏𝑢𝑠,𝑡

+  𝑃𝑠𝑡𝑚𝑏𝑢𝑠,𝑡 −  𝐷𝑒𝑚𝑎𝑛𝑑𝑏𝑢𝑠,𝑡}

≤ 𝐶𝑎𝑝𝑇𝑥𝑙𝑖𝑛𝑒,"𝑙𝑖𝑚+"     ∀𝑡, ∀𝑙𝑖𝑛𝑒  

(3.54) 
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∑ 𝑃𝑇𝐷𝐹𝑙𝑖𝑛𝑒,𝑏𝑢𝑠

𝐵

𝑏𝑢𝑠=1

{ ∑ 𝑃𝑡𝑗,𝑡

𝑗 ∈Λ𝑗𝑏

+ ∑ 𝑃𝑛𝑐𝑙𝑛𝑐𝑙,𝑡

𝑛𝑐𝑙 ∈ Λ𝑛𝑐𝑙−𝑏

+  𝑃𝑤𝑖𝑛𝑑𝐸𝑞𝑏𝑢𝑠,𝑡

+  𝑃𝑠𝑜𝑙𝑎𝑟𝑏𝑢𝑠,𝑡 +  ∑ 𝐺𝑒𝑛𝑃𝑒𝑛𝑝𝑒𝑛,𝑡

𝑝𝑒𝑛 ∈  Λ𝑝𝑒𝑛−𝑏

+  ∑ 𝑃𝑟𝑜𝑟ℎ𝑟,𝑡

ℎ𝑟  ∈ Λℎ𝑟−𝑏

+ ∑ 𝑃ℎ𝑑ℎ𝑑,𝑡

ℎ𝑑 ∈ Λℎ𝑑−𝑏

+  𝑃𝑝𝑐ℎ𝑏𝑢𝑠,𝑡

+  𝑃𝑠𝑡𝑚𝑏𝑢𝑠,𝑡 −  𝐷𝑒𝑚𝑎𝑛𝑑𝑏𝑢𝑠,𝑡}  

≥  −𝐶𝑎𝑝𝑇𝑥𝑙𝑖𝑛𝑒," 𝑙𝑖𝑚−"     ∀𝑡, ∀𝑙𝑖𝑛𝑒  

(3.55) 

To make sure that the DC power flow has one unique solution the sum of all nodal 

injections must be equal zero as presented in eq.(3.56), also known as the demand 

balance constraint. 

∑ 𝑃𝑡𝑗,𝑡

𝐽

𝑗=1

+ ∑ 𝑃𝑛𝑐𝑙𝑛𝑐𝑙,𝑡

𝑁𝑐𝑙

𝑛𝑐𝑙=1

+ ∑ {𝑃𝑤𝑖𝑛𝑑𝐸𝑞𝑏𝑢𝑠,𝑡 + 𝑃𝑠𝑜𝑙𝑎𝑟𝑏𝑢𝑠,𝑡 + 𝑃𝑝𝑐ℎ𝑏𝑢𝑠,𝑡

𝐵

𝑏𝑢𝑠=1

+ 𝑃𝑠𝑡𝑚𝑏𝑢𝑠,𝑡} + ∑ 𝐺𝑒𝑛𝑃𝑒𝑛𝑝𝑒𝑛,𝑡

𝑃𝑒𝑛

𝑝𝑒𝑛=1

+  ∑ 𝑃𝑟𝑜𝑟ℎ𝑟,𝑡

𝐻𝑟

ℎ𝑟=1

+ ∑ 𝑃ℎ𝑑ℎ𝑑,𝑡

𝐻𝑑

ℎ𝑑=1

≥  ∑ 𝐷𝑒𝑚𝑎𝑛𝑑𝑏𝑢𝑠,𝑡

𝐵

𝑏𝑢𝑠=1

  ∀𝑡 

(3.56) 

The spinning reserve was modeled through the eq. (3.57). As presented, this 

constraint imposes that the summation of the capacity of the thermal and hydro with 

reservoir units that are in ON state at a given time (generation units which binary 

variables 𝑈𝑗,𝑡 or 𝑉ℎℎ𝑑,𝑡 are equal to 1) needs to be higher than the liquid demand8 by the 

                                                 

8 In the context of spinning reserve analysis, the liquid demand is the resulting demand after subtracting 

nuclear, run-of-river hydro, wind and non-dispatchable generation at a given time.  
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percentage established by the 𝑠𝑝𝑖𝑛 variable. In other words, this restriction can lead to a 

solution with more dispatched units that for the case without spinning reserve. 

However, this measure can give protection against to power variations in the system, as 

shown in Section 5.2. 

 

∑[𝑃𝑐𝑎𝑝𝑗 ∗ 𝑈𝑗,𝑡]  +

𝐽

𝑗=1

 ∑ [𝑃ℎ𝑑𝑀𝑎𝑥ℎ𝑑 ∗ 𝑉ℎℎ𝑑,𝑡]

𝐻𝑑

ℎ𝑑=1

+  ∑ 𝐺𝑒𝑛𝑃𝑒𝑛𝑝𝑒𝑛,𝑡

𝑃𝑒𝑛

𝑝𝑒𝑛=1

≥ (1 + 𝑠𝑝𝑖𝑛)

∗ ( ∑ 𝐷𝑒𝑚𝑎𝑛𝑑𝑏𝑢𝑠,𝑡 − 

𝐵

𝑏𝑢𝑠=1

∑ 𝑃𝑛𝑐𝑙𝑛𝑐𝑙,𝑡

𝑁𝐶𝐿

𝑛𝑐𝑙=1

−  ∑ 𝑃𝑟𝑜𝑟ℎ𝑟,𝑡

𝐻𝑟

ℎ𝑟 =1

− ∑  (𝑃𝑤𝑖𝑛𝑑𝐸𝑞𝑏𝑢𝑠,𝑡 + 𝑃𝑠𝑜𝑙𝑎𝑟𝑏𝑢𝑠,𝑡 + 𝑃𝑝𝑐ℎ𝑏𝑢𝑠,𝑡

𝐵

𝑏𝑢𝑠=1

+ 𝑃𝑠𝑡𝑚𝑏𝑢𝑠,𝑡)) ∀𝑡 

(3.57) 

3.2.6. Wind power generation constraints 

Wind energy is a priority in the developed model because, unlike thermal and 

hydropower plants which have variable cost defined according to their fuel cost or water 

value, its variable generation cost is null. However, in this model the generation of wind 

energy is not treated as an uncontrollable generation that must be injected into the grid. 

Instead, it is individually modeled at its connection point, being subject to curtailment 

by the UC model if required to reach optimality. This means that wind generation is a 

priority source to meet the demand, but not a mandatory source to be directly subtracted 

from the load. The flexibility provided by modeling wind generation as a priority source 

subject to curtailment can lead to a reduction in operating costs [130]. This restriction is 

represented in eq.(3.60). 

𝑃𝑤𝑖𝑛𝑑𝐹𝑐𝑎𝑠𝑡𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡

=  ∑ 𝑊𝑖𝑛𝑑𝐶𝑎𝑜𝑤𝑛 ∗ 𝑃𝑤𝑖𝑛𝑑𝑃𝑈𝑤𝑛,𝑡

𝑊𝑁

𝑤𝑛 ∈ Λ𝑤𝑛−𝑏𝑢𝑠𝑊

    ∀𝑡, ∀𝑏𝑢𝑠𝑊𝑖𝑛𝑑 
(3.58) 
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𝑃𝑤𝑖𝑛𝑑𝑇𝑒𝑚𝑝𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡 = 𝑃𝑤𝑖𝑛𝑑𝐹𝑐𝑎𝑠𝑡𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡    ∀𝑡, ∀𝑏𝑢𝑠𝑊𝑖𝑛𝑑 (3.59) 

𝑃𝑤𝑖𝑛𝑑𝐸𝑞𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡 ≤ 𝑃𝑤𝑖𝑛𝑑𝑇𝑒𝑚𝑝𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡    ∀𝑡, ∀𝑏𝑢𝑠𝑊𝑖𝑛𝑑 (3.60) 

3.2.7. Non dispatchable power plants 

The solar PV generation and the generation from small thermal and small hydro 

power plants are considered Non Individually Simulated Plants (NISP) [137]. These 

plants are represented as hourly energy blocks to be withdrawn from the bus load at 

which each NISP is connected. The NISP generation is defined by its installed power 

capacity multiplied by the availability of the resource.  

a. Solar PV Generation 

The solar PV data are provided as a normalized hourly profile for each hotspot, the 

total generation is obtained by multiplying the installed capacity of each hotspot by the 

hourly profile. The total solar PV generation by bus is calculated as a sum of all 

equivalent solar hotspots generation in each bus as presented in eq. (3.61). 

𝑃𝑠𝑜𝑙𝑎𝑟𝐹𝑐𝑎𝑠𝑡𝑏𝑢𝑠,𝑡 =  ∑ 𝑃𝑉𝐶𝑎𝑝𝑠𝑟 ∗ 𝑃𝑠𝑜𝑙𝑎𝑟𝑃𝑈𝑠𝑟,𝑡

𝑆𝑅

𝑠𝑟 ∈ Λ𝑠𝑟−𝑏

    ∀𝑡, ∀𝑏𝑢𝑠 (3.61) 

b. Small generation plants  

In this group there are two types of generation plants: Small thermal power plants 

(stm) composed mainly by biomass thermal power plants and small hydro power plants 

(pch) (power plants with nominal power below 30MW). The generation of each plant in 

this category is obtained by multiplying its installed capacity by the seasonal generation 

profile. The small power plants’ generation by bus is calculated as the sum of the power 

generation of the small plants connected to each bus as presented in (3.62). 

𝑃𝑠𝑢𝑏𝑢𝑠,𝑡 =  ∑ 𝑆𝑚𝑈𝑛𝐶𝑎𝑝𝑠𝑚 ∗ 𝑃𝑠𝑚𝑃𝑈𝑠𝑚,𝑡

𝑆𝑀

𝑠𝑚 ∈ Λ𝑠𝑚−𝑏

    𝑠𝑢: {𝑠𝑡𝑚, 𝑝𝑐ℎ}, ∀𝑡, ∀𝑏𝑢𝑠 (3.62) 
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Chapter 4 

4.Robust Unit Commitment Model 

In this section, a two-stage robust UC optimization problem with wind power 

uncertainty is presented. To do so, the definition of [20] “A UC decision is called 

robust, if when the real wind power deviates from the forecast value and remains in a 

certain region, there will always be a corrective action that recovers all the operating 

constraints without changing the given UC decision” is considered. In the first stage of 

the optimization problem, UC decisions are defined with the objective of minimizing 

the system-wide power generation cost; i.e. unit commitment cost and dispatch cost 

under the worst-case scenario. The worst-case scenario is defined in the second stage 

problem. 

4.1. Mathematical Formulation for the Adaptive Robust 

Approach 

The mathematical formulation of a two-stage adaptative robust optimization model 

suited to deal with uncertain events, here called as R-STORM, was based on the model 

proposed by Jiang et al. [34], [35]. However, in addition with the restrictions considered 

in that model, the formulation of R-STORM also takes into account the detailed 

characteristics of hydropower units with reservoir and allows wind power curtailment. 

This last feature allows a more cost-efficient system operation, as presented by [152], 

and reduces from three to one the number of blocks of bilinear terms of the dual 

objective function. The solution methodology considers Benders decomposition [62]. 

The uncertainty set was defined as a box set [70] with uncertainty budgets, as proposed 

by [68]. Due to the fact that the worst-case scenarios were found on the extreme level of 

the resultant polyhedral uncertainty set, the uncertainty budget was defined as a 

cardinality budget [36], [35]. 
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4.1.1. Uncertainty set definition 

This thesis uses a static uncertainty set to capture the randomness nature of wind 

energy. The uncertainty set used in this thesis is defined from a box type uncertainty set 

(as defined by eq. (2.1)) which is transformed into a polyhedral set by considering 

temporal uncertainty budget (as described in Section 2.2.2), in order to avoid over-

conservative UC decisions. Furthermore, since the probability that the worst-cases 

scenarios are located at the vertex of the polyhedral uncertainty set is high under the 

model of data uncertainty [153], [68], the implemented uncertainty budget is a 

cardinality budget (presented in eq. (2.4)). This approach restricts the number of time 

periods in which the wind power generation deviates from its forecasted value at power 

system bus bus. 

To define the upper and lower levels of the initial uncertainty set (Box type) two 

statistical analysis were performed. The analyzes considers the hotspots presented in 

Table II-10. In the first one, the homoscedasticity of the wind speed data was tested 

using the F-test. Results in Table 4-1 present, for each hotspot, the cases were the null 

hypothesis was rejected, i.e. the months with different wind speed variances. It can be 

deduced that for all hotspots considered the wind speed showed homoscedasticity 

within the first and the second semester. Therefore, it could be possible to use two 

variance values (for each hotspot) to describe the wind speed behavior through the year. 

It is highlighted, nonetheless, that the hourly data available are from the year 2015. 

Therefore, this analysis does not consider the possibility of variance variations over a 

longer time frame.  

Table 4-1. F-test Results for Wind energy hotspots. 

Hotspot  

Name 

Months with  

different variance 

Hotspot  

Name 

Months with  

different variance 

HS-1-Parnaíba 

6-9 

HS-16-São Paulo 

-Congonhas 

6-9 

6-10 6-11 

6-11 6-12 

6-12 HS-17-Chapecó 6-9 

HS-13-Diamantina 
6-9 

HS-21-Torres 
4-9 

6-10 6-9 



45 

 

HS-14-Paranaíba 

6-9 
HS-24-Pelotas 

6-9 

6-10 6-12 

6-11 
HS-25-Santa Vitoria 

 do Palmar 

6-9 

6-12 6-12 

 

In the second statistical analysis, the use of quantiles was analyzed as an alternative 

to establish the variation range for wind speed and wind power output. Figure 4.1 and 

Figure 4.2 present an illustrative example using real data in which the interval for the 

wind power output is defined using: i) the 5th -quantile (Q(0.05)) and 95th - quantile 

(Q(0.95)) and ii) ± one standard deviation. It was chosen to work with quantiles and 

with wind power output data. Thus, the upper and lower bounds of the variation 

modeled by the uncertainty set are presented in eq. (4.1) and eq.(4.2), respectively.  

𝑃𝑤𝑖𝑛𝑑𝑈𝑃𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡

= 𝑃𝑤𝑖𝑛𝑑𝐶𝑎𝑝𝑏𝑢𝑠𝑊𝑖𝑛𝑑 ∗ 𝑄(0.95)

− 𝑃𝑤𝑖𝑛𝑑𝐹𝑐𝑎𝑠𝑡𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡  ∀𝑡, ∀𝑏𝑢𝑠𝑊𝑖𝑛𝑑 

(4.1) 

𝑃𝑤𝑖𝑛𝑑𝐷𝑊𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡

= −𝑃𝑤𝑖𝑛𝑑𝐶𝑎𝑝𝑏𝑢𝑠𝑊𝑖𝑛𝑑 ∗ 𝑄(0.05)

+  𝑃𝑤𝑖𝑛𝑑𝐹𝑐𝑎𝑠𝑡𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡  ∀𝑡, ∀𝑏𝑢𝑠𝑊𝑖𝑛𝑑 

(4.2) 

Therefore, the model of data uncertainty considers the following possible values for 

the uncertain parameter i.e. wind power generation of each busWind at each time:  

{

𝑃𝑤𝑖𝑛𝑑𝐹𝑐𝑎𝑠𝑡𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡 − 𝑃𝑤𝑖𝑛𝑑𝐷𝑊𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡;

 𝑃𝑤𝑖𝑛𝑑𝐹𝑐𝑎𝑠𝑡𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡;

 𝑃𝑤𝑖𝑛𝑑𝐹𝑐𝑎𝑠𝑡𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡 +  𝑃𝑤𝑖𝑛𝑑𝑈𝑃𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡

} (4.3) 
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Figure 4.1 Statistical data for wind speed of Hotspot H24-Pelotas. 

 

Figure 4.2 Statistical data for wind power of Hotspot H24-Pelotas. 

It is important to highlight that the numerical definition of upper and lower level 

done in this thesis was made considering the hourly wind speed variability due to data 

availability. It could be interesting and, perhaps less conservative, to define the 

uncertainty set using wind power prediction error. Nonetheless, the upper and lower 

bound definition is an exogenous data of the R-STORM and can be adjusted based on 

the user requirements and available data.  

From de definitions above, a cardinality uncertainty budget (𝐵𝑔𝑡𝑏𝑢𝑠𝑊𝑖𝑛𝑑) is used to 

adjust the level of conservatism [35], as stated by (4.4) and (4.5). 

∑ 𝑍𝑝𝑜𝑠𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡 + 𝑍𝑛𝑒𝑔𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡

𝑇

𝑡=1

≤ 𝐵𝑔𝑡𝑏𝑢𝑠𝑊𝑖𝑛𝑑 ∀𝑏𝑢𝑠𝑊𝑖𝑛𝑑 (4.4) 
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𝑃𝑤𝑖𝑛𝑑𝑇𝑒𝑚𝑝𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡

= 𝑃𝑤𝑖𝑛𝑑𝐹𝑐𝑎𝑠𝑡𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡 + 𝑍𝑝𝑜𝑠𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡 ∗ 𝑃𝑤𝑖𝑛𝑑𝑈𝑃𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡

− 𝑍𝑛𝑒𝑔𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡 ∗ 𝑃𝑤𝑖𝑛𝑑𝐷𝑊𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡    ∀𝑡, ∀𝑏𝑢𝑠𝑊𝑖𝑛𝑑 

(4.5) 

In other words, if 𝐵𝑔𝑡𝑏𝑢𝑠𝑊𝑖𝑛𝑑 = 0, then 𝑃𝑤𝑖𝑛𝑑𝑇𝑒𝑚𝑝𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡 will be equal to be 

forecasted value assuming that small deviations can be balanced by the online 

conventional generation and, therefore, this is the less conservative case; if 1 ≤

𝐵𝑔𝑡𝑏𝑢𝑠𝑊𝑖𝑛𝑑 ≤ 𝑇, the model will allow 𝑃𝑤𝑖𝑛𝑑𝑇𝑒𝑚𝑝𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡 to highly deviate from the 

forecasted value, within the uncertainty set, for 𝐵𝑔𝑡𝑏𝑢𝑠𝑊𝑖𝑛𝑑 or less periods. In this 

sense, the case with 𝐵𝑔𝑡𝑏𝑢𝑠𝑊𝑖𝑛𝑑 = T is the most conservative. The uncertainty budget 

presented in eq.(4.4) can be defined for each bus with wind generation. The binary 

variables 𝑍𝑝𝑜𝑠 and 𝑍𝑛𝑒𝑔 indicate when the wind power in bus 𝑏𝑢𝑠𝑤𝑖𝑛𝑑 and hour 𝑡 

deviates to the upper or lower level of the uncertainty set. 

Considering the uncertainty set defined by eq. (4.4)- (4.5) the definition of wind 

power for the Robust UC is presented in eq. (4.5). As mentioned in 3.2.6, wind energy 

is subject to curtailment by the UC model, as shown by eq. (4.6). 

𝑃𝑤𝑖𝑛𝑑𝐸𝑞𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡 ≤ 𝑃𝑤𝑖𝑛𝑑𝑇𝑒𝑚𝑝𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡    ∀𝑡, ∀𝑏𝑢𝑠𝑊𝑖𝑛𝑑 (4.6) 

4.1.2. Objective Function and constrains 

The objective function of the Robust UC model is presented in eq. (4.7). 



48 

Min
U

∑ ∑{𝐶𝑆𝑑𝑗 ∗ 𝑈𝑂𝑓𝑓𝑗,𝑡 + 𝐶𝑜𝑙𝑑𝑆𝑗 ∗ 𝑈𝑂𝑛𝑗,𝑡 + 𝑈𝑗,𝑡 ∗  𝐼𝑛𝑑𝐵𝑗}

𝐽

𝑗=1

 

𝑇

𝑡=1

+
Max

PwindEq ∈ W
 

Min
Pt, TurbWat, TurbROR,

Pncl, GenPen
∑ {∑ 𝑃𝑡𝑗,𝑡

𝐽

𝑗=1

𝑇

𝑡=1

∗ (𝐼𝑛𝑑𝐴𝑗 + 𝐶𝑉𝑂𝑀𝑡𝑗)  

+  ∑ {−𝐷𝑒𝑙𝑡𝑎𝑉𝑜𝑙ℎ𝑑 ∗ 𝐶𝑊𝑎𝑡𝑒𝑟ℎ𝑑 + 𝑃ℎ𝑑ℎ𝑑,𝑡 ∗ 𝐶𝑉𝑂𝑀𝑑𝐸𝑞}

𝐻𝑑

ℎ𝑑=1

 

+ ∑ {𝑇𝑢𝑟𝑏𝑅𝑂𝑅ℎ𝑟,𝑡 ∗ 𝑅𝑜𝑅𝐶𝑜𝑠𝑡ℎ𝑟} 

𝐻𝑟

ℎ𝑟=1

+ ∑ 𝐺𝑒𝑛𝑃𝑒𝑛𝑝𝑒𝑛,𝑡 ∗ 𝐶𝑃𝑒𝑛

𝑃𝑒𝑛

𝑝𝑒𝑛=1

+ ∑ 𝑃𝑛𝑐𝑙𝑛𝑐𝑙,𝑡 ∗ 𝐶𝑂𝑉𝐹

𝑁𝑐𝑙

𝑛𝑐𝑙=1

} 

(4.7) 

The robust UC model considers most of the restrictions of STORM model, presented 

in Section 3.2. However, in order to simplify the model, start up and shut down ramps 

are not considered for thermal power plants, only online ramps; i.e. ramp constraints 

(3.18) - (3.19) are replaced by eqs. (4.8) - (4.9). Nonetheless, it is important to highlight 

that for the Monte Carlo sampling analysis presented in Section 5.2 the deterministic 

equivalent model also only considers online ramps. 

𝑃𝑡𝑗,𝑡 − 𝑃𝑡𝑗,𝑡−1 ≤ 𝑅𝑎𝑚𝑝𝑗    ∀𝑗, ∀𝑡 (4.8) 

𝑃𝑡𝑗,𝑡−1 − 𝑃𝑡𝑗,𝑡 ≤ 𝑅𝑎𝑚𝑝𝑗    ∀𝑗, ∀𝑡 (4.9) 

The two-stage robust UC formulation is divided in two sub-problems: the master and 

the slave problem. The separation scheme is embedded in the Benders’ decomposition 

framework. The Robust UC master problem is defined as presented in eq. (4.10), the 

variable Θ and the Benders cut are defined in Section 4.2. 

Min
𝑈, 𝑈𝑂𝑛, 𝑈𝑂𝑓𝑓

∑ ∑{𝐶𝑆𝑑𝑗 ∗ 𝑈𝑂𝑓𝑓𝑗,𝑡 + 𝐶𝑜𝑙𝑑𝑆𝑗 ∗ 𝑈𝑂𝑛𝑗,𝑡 + 𝑈𝑗,𝑡 ∗  𝐼𝑛𝑑𝐵𝑗}

𝐽

𝑗=1

 

𝑇

𝑡=1

+   Θ 

(4.10) 
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s.t: 

• Turn on eq. (3.11) 

• Turn off eq. (3.12) 

• Min time off eq. (3.14) 

• Min time on eq. (3.15) 

• Binary variables definition eq. (3.13) 

• Benders’ cuts 

The slave problem is defined by the objection function in eq. (4.11) and subject to 

constraints in 𝜲(𝑃𝑤𝑖𝑛𝑑𝐸𝑞), where 𝜋𝑥 are the dual variables of the slave problem 

restrictions. In the slave problem formulation, the unit commitment decisions (output of 

the master problem) are considered constants or fixed binary parameters, for each 

Benders algorithm iteration.  

Max
PwindEq ∈ W

 
Min

Pt, TurbWat, TurbROR,
Pncl, GenPen

  ∑ {∑ 𝑃𝑡𝑗,𝑡 ∗ (𝐼𝑛𝑑𝐴𝑗 + 𝐶𝑉𝑂𝑀𝑡𝑗)

𝐽

𝑗=1

 

𝑇

𝑡=1

+  ∑ {−𝐷𝑒𝑙𝑡𝑎𝑉𝑜𝑙ℎ𝑑 ∗ 𝐶𝑊𝑎𝑡𝑒𝑟ℎ𝑑 + 𝑃ℎ𝑑ℎ𝑑,𝑡 ∗ 𝐶𝑉𝑂𝑀𝑑𝐸𝑞}

𝐻𝑑

ℎ𝑑=1

 

+ ∑ {𝑇𝑢𝑟𝑏𝑅𝑂𝑅ℎ𝑟,𝑡 ∗ 𝑅𝑜𝑅𝐶𝑜𝑠𝑡ℎ𝑟} 

𝐻𝑟

ℎ𝑟=1

+ ∑ 𝐺𝑒𝑛𝑃𝑒𝑛𝑝𝑒𝑛,𝑡 ∗ 𝐶𝑃𝑒𝑛

𝑃𝑒𝑛

𝑝𝑒𝑛=1

+ ∑ 𝑃𝑛𝑐𝑙𝑛𝑐𝑙,𝑡 ∗ 𝐶𝑂𝑉𝐹

𝑁𝑐𝑙

𝑛𝑐𝑙=1

} 

(4.11) 
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𝚾(𝑃𝑤𝑖𝑛𝑑𝐸𝑞): 

• Max. power output eq. (3.16) – π1 

• Min. power output eq.(3.17) – π2 

• Online ramp up eq.(4.8)– π4 

• Online ramp down eq.(4.9) – π3 

• Min. nuclear power output eq. (3.20) – π5 

• Max. nuclear power output eq.(3.21)  – π6 

• Online ramp up nuclear eq. (3.22) – π7 

• Online ramp down nuclear eq. (3.23) – π8 

T
h
erm

al p
o
w

er u
n
its’ 

restrictio
n
s (π

 - d
u
al 

v
ariab

les) 

• Max. power output eq. (3.37) – π9 

• Min. power output eq. (3.41) – π10 

• Max. turbinated outflow eq. (3.39) – π11 

• Min. turbinated outflow eq. (3.42) – π12 

• Max. reservoir level eq. (3.45) – π13 

• Min. reservoir level eq. (3.46) – π14 

• Spillage limit eq. (3.43) – π15 

• Reservoir water balance eq. (3.49) – π16 

• Reservoir Initial value eq. (3.47) 

• Inflow of unit hT (considering cascade) eq. (3.48) – π17 

• RES- Hydropower production function eq.(3.35)– π18 

• ROR- Hydropower production function eq. (3.36) – π19 

• Max. turbinated outflow for ROR plants eq. (3.40) – π20 

• Spillage definition for ROR plants eq. (3.44) – π21 

• Delta between the initial and the final reservoir level eq.(3.10) 

H
y
d
ro

 p
o
w

er p
lan

ts’ restrictio
n
s 

(π
 - d

u
al v

ariab
le) 

• Demand balance eq. (3.56) – π23 

• DC power flow (+), Transmission line capacity eq. (3.54) – π24 

• DC power flow (-), Transmission line capacity eq. (3.55) – π25 

Electrical grid’ 

restrictions 

• Dispatchable Wind power eq.(3.59) - (3.60) – π29 
Wind power 

plants’ 

restrictions 

𝑃𝑡, 𝑃ℎ𝑑, 𝑇𝑢𝑟𝑏𝑊𝑎𝑡, 𝑆𝑝𝑖𝑙, 𝑅𝑠𝑟𝑣, 𝑃𝑟𝑜𝑟, 𝑇𝑢𝑟𝑏𝑅𝑂𝑅, 𝑆𝑝𝑖𝑙𝑅𝑂𝑅, 𝑃𝑛𝑐𝑙, 𝐺𝑒𝑛𝑃𝑒𝑛, 𝑉𝑎𝑧𝑎𝑜𝐼𝑛𝐸𝑞,

≥ 0 
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4.2. Solution Methodology 

The proposed formulation is a min-max-min problem (eq. (4.7)). This type of 

formulation cannot be solved directly by commercial software such as CPLEX. 

Therefore, the Benders’ decomposition duality-based approach [28], [35] is employed 

as a solution methodology. The algorithm solves the master problem iteratively by 

adding new constraints to cut off the infeasible or non-optimal solutions defined 

through the solution of the slave problem. By dualizing the inner problem of the slave 

problem, which is a max-min problem, the slave problem is transformed into a 

maximization problem (max-max) only. The dual objective function of the slave 

problem is presented in eqs. (4.12) - (4.13) and it is subject to constraints (4.14) - (4.25). 
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Max
PwindEq 

Max
πx 

  ∑ ∑[−𝑃𝑐𝑎𝑝(𝑗) ∗ 𝑈. 𝑙(𝑗,𝑡) ∗ 𝜋1(𝑗,𝑡) +  𝑃𝑚𝑖𝑛(𝑗) ∗ 𝑈. 𝑙(𝑗,𝑡) ∗ 𝜋2(𝑗,𝑡) − 𝜋3(𝑗,𝑡) ∗ 𝑅𝑎𝑚𝑝(𝑗) −  𝜋4(𝑗,𝑡) ∗ 𝑅𝑎𝑚𝑝(𝑗)]

𝐽

𝑗=1

𝑇

𝑡=1

  

+  ∑ ∑ [𝜋5(𝑛𝑐𝑙,𝑡) ∗ 𝑀𝑖𝑛𝑁𝑐𝑙(𝑛𝑐𝑙) −  𝜋6(𝑛𝑐𝑙,𝑡) ∗ 𝑀𝑎𝑥𝑁𝑐𝑙(𝑛𝑐𝑙) − 𝜋7(𝑛𝑐𝑙,𝑡) ∗ 𝑅𝑈𝑁𝑐𝑙(𝑛𝑐𝑙) − 𝜋8(𝑛𝑐𝑙,𝑡) ∗ 𝑅𝐷𝑁𝑐𝑙(𝑛𝑐𝑙)]

𝑁𝑐𝑙

𝑛𝑐𝑙=1

𝑇

𝑡=1

+ ∑ ∑ 〈−𝜋9(ℎ𝑑,𝑡) ∗ 𝑃ℎ𝑑𝑀𝑎𝑥(ℎ𝑑) ∗ 𝑉ℎ. 𝑙(ℎ𝑑,𝑡) +  𝜋10(ℎ𝑑,𝑡) ∗ 𝑃ℎ𝑑𝑀𝑖𝑛(ℎ𝑑) ∗ 𝑉ℎ. 𝑙(ℎ𝑑,𝑡) − 𝜋11(ℎ𝑑,𝑡) ∗ 𝑄𝑚𝑎𝑥(ℎ𝑑)

𝐻𝑑

ℎ𝑑=1

𝑇

𝑡=1

+ 𝜋12(ℎ𝑑,𝑡) ∗ 𝑄𝑚𝑖𝑛(ℎ𝑑) − 𝜋13(ℎ𝑑,𝑡)  ∗ 𝑀𝑎𝑥𝐿𝑒𝑣𝑒𝑙(ℎ𝑑) +  𝜋14(ℎ𝑑,𝑡) ∗ 𝑀𝑖𝑛𝐿𝑒𝑣𝑒𝑙(ℎ𝑑) − 𝜋15(ℎ𝑑,𝑡) ∗ 𝑆𝑝𝑖𝑙𝑀𝑎𝑥(ℎ𝑑)

− ∑ 𝛾𝑜
ℎ𝑑,𝑝𝑙𝑛 ∗ 𝜋18(ℎ𝑑,𝑝𝑙𝑛,𝑡)

𝐾ℎ𝑑

𝑝𝑙𝑛=1

〉 + ∑ 𝜋16(ℎ𝑑,0) ∗ 𝐼𝑛𝑖𝑡𝑣𝑎𝑙(ℎ𝑑)

𝐻𝑑

ℎ𝑑=1

+ ∑ ∑ 𝛾𝑉
ℎ𝑑,𝑝𝑙𝑛 ∗ 𝐼𝑛𝑖𝑡𝑣𝑎𝑙(ℎ𝑑) ∗ 𝜋18(ℎ𝑑,𝑝𝑙𝑛,0)

𝑃

𝑝𝑙𝑎𝑛𝑒𝑠=1

𝐻𝑑

ℎ𝑑=1

+ ∑ ∑ 𝜋17(ℎ𝑇,𝑡) ∗ 𝐼𝑛𝑓𝑙𝑜𝑤ℎ𝑡ℎ𝑇,𝑡

𝐻𝑇

ℎ𝑇=1

𝑇

𝑡=1

 + ∑ ∑ 〈 ∑ {−𝜋19(ℎ𝑟,𝑝𝑙𝑛𝑅,𝑡) ∗ 𝛾𝑜
ℎ𝑟,𝑝𝑙𝑛𝑅} − 𝜋20(ℎ𝑟,𝑡) ∗ 𝑄𝑚𝑎𝑥𝑅𝑂𝑅ℎ𝑟

𝐾ℎ𝑟

𝑃𝑙𝑛𝑅=1

〉

𝐻𝑟

ℎ𝑟=1

𝑇

𝑡=1

+ ⋯ 

(4.12) 
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… +  ∑ 𝜋22(𝑡)

𝑇

𝑡=1

{− ∑ 𝑃𝑐𝑎𝑝(𝑗)

𝐽

𝑗=1

− ∑ 𝑃ℎ𝑑𝑀𝑎𝑥(ℎ𝑑)

𝐻𝑑

ℎ𝑑=1

} 

+  ∑ ∑ 𝜋23(𝑡)〈−𝑃𝑠𝑜𝑙𝑎𝑟𝐸𝑞(𝑏𝑢𝑠,𝑡) − 𝑃𝑝𝑐ℎ(𝑡,𝑏𝑢𝑠) − 𝑃𝑠𝑡𝑚(𝑡,𝑏𝑢𝑠) + 𝐷𝑒𝑚𝑎𝑛𝑑(𝑡,𝑏𝑢𝑠)〉

𝐵

𝑏𝑢𝑠=1

𝑇

𝑡=1

+  ∑ ∑ 𝜋24(𝑡,𝑙𝑖𝑛𝑒) 〈−𝐶𝑎𝑝𝑇𝑥(𝑙𝑖𝑛𝑒,"𝑙𝑖𝑚+")

𝐿

𝑙𝑖𝑛𝑒=1

𝑇

𝑡=1

+ ∑ 𝑃𝑇𝐷𝐹𝑙𝑖𝑛𝑒,𝑏𝑢𝑠

𝐵

𝑏𝑢𝑠=1

{𝑃𝑠𝑜𝑙𝑎𝑟𝐸𝑞(𝑏𝑢𝑠,𝑡) +  𝑃𝑝𝑐ℎ(𝑏𝑢𝑠,𝑡) + 𝑃𝑠𝑡𝑚(𝑏𝑢𝑠,𝑡) − 𝐷𝑒𝑚𝑎𝑛𝑑𝑏𝑢𝑠,𝑡}〉 

+  ∑ ∑ 𝜋25(𝑙𝑖𝑛𝑒,𝑡) 〈−𝐶𝑎𝑝𝑇𝑥(𝑙𝑖𝑛𝑒,"𝑙𝑖𝑚−")

𝐿

𝑙𝑖𝑛𝑒=1

𝑇

𝑡=1

+ ∑ 𝑃𝑇𝐷𝐹𝑙𝑖𝑛𝑒,𝑏𝑢𝑠

𝐵

𝑏𝑢𝑠=1

{−𝑃𝑠𝑜𝑙𝑎𝑟𝐸𝑞(𝑏𝑢𝑠,𝑡) −  𝑃𝑝𝑐ℎ(𝑡,𝑏𝑢𝑠) − 𝑃𝑠𝑡𝑚(𝑡,𝑏𝑢𝑠) + 𝐷𝑒𝑚𝑎𝑛𝑑𝑏𝑢𝑠,𝑡}〉  

+  ∑ ∑ 𝑃𝑤𝑖𝑛𝑑𝑇𝑒𝑚𝑝(𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡) ∗ 〈−𝜋29(𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡)〉

𝐵

𝑏𝑢𝑠=1

𝑇

𝑡=1

 

(4.13) 
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Subject to: 

• Dual of 𝑃𝑡(𝑗,𝑡) 

 −𝜋1(𝑗,𝑡) + 𝜋2(𝑗,𝑡)  − 𝜋3(𝑗,𝑡) + 𝜋3(𝑗,𝑡+1) + 𝜋4(𝑗,𝑡) − 𝜋4(𝑗,𝑡+1) − 𝜋22(𝑡)

+ 𝜋23(𝑡)

+ ∑ ∑ 𝑃𝑇𝐷𝐹𝑙𝑖𝑛𝑒,𝑏𝑢𝑠

∀𝑏𝑢𝑠 ↔𝐺𝐵(𝑏𝑢𝑠,𝑗)~∅𝑙𝑖𝑛𝑒 𝜖 𝑇𝑥 

∗ {𝜋25(𝑙𝑖𝑛𝑒,𝑡) − 𝜋24(𝑙𝑖𝑛𝑒,𝑡)}  ≤ 𝐼𝑛𝑑𝐴(𝑗) + 𝐶𝑉𝑂𝑀𝑡𝑗     ∀𝑡, ∀𝑗  

(4.14) 

• Dual of 𝑃𝑛𝑐𝑙(𝑛𝑐𝑙,𝑡) 

𝜋5(𝑛𝑐𝑙,𝑡) − 𝜋6(𝑛𝑐𝑙,𝑡) − 𝜋7(𝑛𝑐𝑙,𝑡) + 𝜋7(𝑛𝑐𝑙,𝑡++1) + 𝜋8(𝑛𝑐𝑙,𝑡) − 𝜋8(𝑛𝑐𝑙,𝑡++1)

+ 𝜋23(𝑡)

+ ∑ ∑ 𝑃𝑇𝐷𝐹𝑙𝑖𝑛𝑒,𝑏𝑢𝑠

 ∀𝑏𝑢𝑠↔𝐺𝐵(𝑏𝑢𝑠,𝑛𝑐𝑙)~∅𝑙𝑖𝑛𝑒 𝜖 𝑇𝑥

∗ {𝜋25(𝑙𝑖𝑛𝑒,𝑡) − 𝜋24(𝑙𝑖𝑛𝑒,𝑡)}  ≤ 𝐶𝑂𝑉𝐹  ∀𝑡, ∀𝑛𝑐𝑙  

(4.15) 

• Dual of 𝑃ℎ𝑑(ℎ𝑑,𝑡) 

−𝜋9(ℎ𝑑,𝑡) +  𝜋10(ℎ𝑑,𝑡) − ∑ 𝜋18(ℎ𝑑,𝑡,𝑝𝑙𝑛)

𝑝𝑙𝑛

− 𝜋22(𝑡) + 𝜋23(𝑡)

+ ∑ ∑ 𝑃𝑇𝐷𝐹𝑙𝑖𝑛𝑒,𝑏𝑢𝑠

∀𝑏𝑢𝑠 ↔𝐺𝐵(𝑏𝑢𝑠,ℎ𝑑)~∅𝑙𝑖𝑛𝑒 𝜖 𝑇𝑥

∗ {𝜋25(𝑙𝑖𝑛𝑒,𝑡) − 𝜋24(𝑙𝑖𝑛𝑒,𝑡)}  ≤ 𝐶𝑉𝑂𝑀𝑑𝐸𝑞  ∀ℎ𝑑, ∀𝑡  

(4.16) 

• Dual of 𝑇𝑢𝑟𝑏𝑊𝑎𝑡(ℎ𝑑,𝑡) 

−𝜋11(ℎ𝑑,𝑡) + 𝜋12(ℎ𝑑,𝑡) + 0.0036 ∗ 𝜋16(ℎ𝑑,𝑡)

− ∑ 𝜋17(ℎ𝑇,𝑡+𝑡𝑣𝑖𝑎𝑔(ℎ𝑇))

∀ℎ𝑇→ 𝑇𝑏𝑙𝐶𝑎𝑠𝑐(ℎ𝑇,ℎ𝑑)~∅

− ∑ 𝛾𝑄
ℎ𝑑,𝑝𝑙𝑛 ∗ 𝜋18(𝑝𝑙𝑛,ℎ𝑑,𝑡)

𝑝𝑙𝑎𝑛𝑒𝑠

 ≤ 0  ∀ℎ𝑑, ∀𝑡  

(4.17) 
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• Dual of 𝑆𝑝𝑖𝑙(ℎ𝑑,𝑡) 

𝜋12(ℎ𝑑,𝑡) − 𝜋15(ℎ𝑑,𝑡) + 0.0036 ∗ 𝜋16(ℎ𝑑,𝑡)

− ∑ 𝜋17(ℎ𝑇,𝑡+𝑡𝑣𝑖𝑎𝑔(ℎ𝑇))

∀ℎ𝑇→ 𝑇𝑏𝑙𝐶𝑎𝑠𝑐(ℎ𝑇,ℎ𝑑)~∅

+ ∑ 𝛾𝑆
ℎ𝑑,𝑝𝑙𝑛 ∗ 𝜋18(𝑝𝑙𝑛,ℎ𝑑,𝑡)

𝑝𝑙𝑎𝑛𝑒𝑠

 ≤ 0  ∀ℎ𝑑, ∀𝑡  

(4.18) 

• Dual of 𝑅𝑠𝑟𝑣(ℎ𝑑,𝑡) 

−𝜋13(ℎ𝑑,𝑡) + 𝜋14(ℎ𝑑,𝑡) + 𝜋16(ℎ𝑑,𝑡) − 𝜋16(ℎ𝑑,𝑡+1)

− ∑ 𝛾𝑉
ℎ𝑑,𝑝𝑙𝑛 ∗ π18(𝑝𝑙𝑛,ℎ𝑑,𝑡+1)

𝑝𝑙𝑎𝑛𝑒𝑠

 ≤ 𝜑  ∀ℎ𝑑, ∀𝑡 

𝜑 ∶= {
0 ↔  (𝑡 < 𝑇)

 – 𝐶𝑊𝑎𝑡𝑒𝑟(ℎ𝑑) ↔ (𝑡 = 𝑇)
    

(4.19) 

• Dual of  𝑉𝑎𝑧𝑎𝑜𝐼𝑛𝐸𝑞(ℎ𝑇,𝑡) 

𝜋17(ℎ𝑇,𝑡) − 0.0036 ∗ 𝜋16(ℎ𝑑,𝑡) − 𝜋21(ℎ𝑟,𝑡) ≤ 0    ∀ℎ𝑑 → (ℎ𝑑 = ℎ𝑇),

∀ℎ𝑟 → (ℎ𝑟 = ℎ𝑇), ∀ℎ𝑇, ∀𝑡  
(4.20) 

• Dual of 𝑇𝑢𝑟𝑏𝑅𝑂𝑅(ℎ𝑟, 𝑡) 

− ∑ 𝜋17(ℎ𝑇,𝑡+𝑡𝑣𝑖𝑎𝑔(ℎ𝑇))

∀ℎ𝑇→ 𝑇𝑏𝑙𝐶𝑎𝑠𝑐(ℎ𝑇,ℎ𝑟)~∅

+ ∑ {𝛾𝑄
ℎ𝑟,𝑝𝑙𝑛𝑅 ∗ 𝜋19(ℎ𝑟,𝑝𝑙𝑛𝑅,𝑡)}

𝑝𝑙𝑎𝑛𝑒𝑠𝑅𝑂𝑅

− 𝜋20(ℎ𝑟,𝑡)

+ 𝜋21(ℎ𝑟,𝑡)  ≤ 𝑅𝑂𝑅𝐶𝑜𝑠𝑡    ∀ℎ𝑟 , ∀𝑡  

(4.21) 

• Dual of  𝑆𝑝𝑖𝑙𝑙𝑅𝑂𝑅(ℎ𝑟, 𝑡) 
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− ∑ 𝜋17(ℎ𝑇,𝑡+𝑡𝑣𝑖𝑎𝑔(ℎ𝑇))

∀ℎ𝑇→ 𝑇𝑏𝑙𝐶𝑎𝑠𝑐(ℎ𝑇,ℎ𝑟)~∅

 

+  ∑ {𝛾𝑆
ℎ𝑟,𝑝𝑙𝑛𝑅 ∗ 𝜋19(ℎ𝑟,𝑝𝑙𝑛𝑅,𝑡)}

𝑝𝑙𝑎𝑛𝑒𝑠𝑅𝑂𝑅

+ 𝜋21ℎ𝑟,𝑡  

≤ 0    ∀ℎ𝑟 , ∀𝑡  

(4.22) 

• Dual of 𝑃𝑟𝑜𝑟(ℎ𝑟,𝑡) 

− ∑ π19(ℎ𝑟,𝑝𝑙𝑛𝑅,𝑡)

𝑝𝑙𝑛𝑅

+ 𝜋23(𝑡)

+ ∑ ∑ 𝑃𝑇𝐷𝐹𝑙𝑖𝑛𝑒,𝑏𝑢𝑠

∀𝑏𝑢𝑠 ↔𝐺𝐵(𝑏𝑢𝑠,ℎ𝑟)~∅𝑙𝑖𝑛𝑒 𝜖 𝑇𝑥

∗ {𝜋25(𝑙𝑖𝑛𝑒,𝑡) − 𝜋24(𝑙𝑖𝑛𝑒,𝑡)}  ≤ 0    ∀ℎ𝑟 , ∀𝑡  

(4.23) 

• Dual of  𝐺𝑒𝑛𝑃𝑒𝑛𝑝𝑒𝑛,𝑡 

𝜋23(𝑡) + ∑ ∑ 𝑃𝑇𝐷𝐹𝑙𝑖𝑛𝑒,𝑏𝑢𝑠 ∗ {𝜋25(𝑙𝑖𝑛𝑒,𝑡) − 𝜋24(𝑙𝑖𝑛𝑒,𝑡)}

∀𝑏𝑢𝑠 ↔𝐺𝐵(𝑏𝑢𝑠,𝑝𝑒𝑛)~∅𝑙𝑖𝑛𝑒 𝜖 𝑇𝑥

 

≤ 𝐶𝑃𝑒𝑛     ∀𝑝𝑒𝑛 , ∀𝑡  

(4.24) 

• Dual of 𝑃𝑤𝑖𝑛𝑑𝐸𝑞(𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡) 

𝜋23(𝑡) + ∑ 𝑃𝑇𝐷𝐹𝑙𝑖𝑛𝑒,𝑏𝑢𝑠 ∗ {𝜋25(𝑙𝑖𝑛𝑒,𝑡) − 𝜋24(𝑙𝑖𝑛𝑒,𝑡)}

𝑙𝑖𝑛𝑒 𝜖 𝑇𝑥

−  𝜋29𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡

≤ 0     ∀𝑏𝑢𝑠𝑊𝑖𝑛𝑑, ∀𝑡  

(4.25) 

For the dualization of the inner problem of the slave problem, wind power was 

considered as a known parameter. However, once the slave problem is transformed into 

a maximization problem, the variables 𝑃𝑤𝑖𝑛𝑑𝑇𝑒𝑚𝑝(𝑏𝑢𝑠𝑊𝑖𝑛𝑑, 𝑡) and, consequently, 

𝑃𝑤𝑖𝑛𝑑𝐸𝑞(𝑏𝑢𝑠𝑊𝑖𝑛𝑑, 𝑡) become decision variables of the outer problem of the slave 

problem. As a result, the objective function of the slave problem has a bilinear term (the 

last term in eq. (4.12)- (4.13)). To linearize this bilinear term, it is employed the big M-

method (disjunctive constraints) [154] as follows: 

Η(… ) is the rest of the objective function defined in (4.12) -(4.13) 
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𝑀𝑎𝑥 Η(… ) + ∑ ∑ 𝑃𝑤𝑖𝑛𝑑𝑇𝑒𝑚𝑝(𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡) ∗ 〈−𝜋29(𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡)〉

𝐵

𝑏𝑢𝑠=1

𝑇

𝑡=1

   (4.26) 

Replacing (4.5) in (4.26): 

Max Η(… ) + ∑ ∑ (𝑃𝑤𝑖𝑛𝑑𝐹𝑐𝑎𝑠𝑡(𝑏𝑢𝑠𝑤𝑖𝑛𝑑,𝑡)  + 𝑍𝑝𝑜𝑠(𝑏𝑢𝑠𝑤𝑖𝑛𝑑,𝑡)

𝐵

𝑏𝑢𝑠=1

𝑇

𝑡=1

∗ 𝑃𝑤𝑖𝑛𝑑𝑈𝑃(𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡) − 𝑍𝑛𝑒𝑔(𝑏𝑢𝑠𝑤𝑖𝑛𝑑,𝑡)

∗ 𝑃𝑤𝑖𝑛𝑑𝐷𝑊(𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡)) ∗ −𝜋29(𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡)  

(4.27) 

𝑍𝑝𝑜𝑠(𝑏𝑢𝑠𝑤𝑖𝑛𝑑,𝑡), 𝑍𝑛𝑒𝑔(𝑏𝑢𝑠𝑤𝑖𝑛𝑑,𝑡)  ∈  {0,1}  

The variables 𝜋29(𝑏𝑢𝑠𝑤𝑖𝑛𝑑,𝑡)
+  and  𝜋29(𝑏𝑢𝑠𝑤𝑖𝑛𝑑,𝑡)

−  are defined as: 

𝜋29(𝑏𝑢𝑠𝑤𝑖𝑛𝑑,𝑡)
+ =  𝑍𝑝𝑜𝑠(𝑏𝑢𝑠𝑤𝑖𝑛𝑑,𝑡) ∗ −𝜋29(𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡) 

 

𝜋29(𝑏𝑢𝑠𝑤𝑖𝑛𝑑,𝑡)
− =  𝑍𝑛𝑒𝑔(𝑏𝑢𝑠𝑤𝑖𝑛𝑑,𝑡) ∗ −𝜋29(𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡) 

(4.28) 

Finally, by replacing (4.28) in (4.27) and employing the big M method, the bilinear 

term in the objective function is translated as eq. (4.29) subject to constraints (4.30) -

(4.33). 

Max Η(… ) + ∑ ∑ (−𝜋29(𝑏𝑢𝑠𝑤𝑖𝑛𝑑,𝑡) ∗ 𝑃𝑤𝑖𝑛𝑑𝐹𝑐𝑎𝑠𝑡(𝑏𝑢𝑠𝑤𝑖𝑛𝑑,𝑡)

𝐵

𝑏𝑢𝑠=1

𝑇

𝑡=1

+ 𝜋29(𝑏𝑢𝑠𝑤𝑖𝑛𝑑,𝑡)
+ ∗ 𝑃𝑤𝑖𝑛𝑑𝑈𝑃(𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡) + 𝜋29(𝑏𝑢𝑠𝑤𝑖𝑛𝑑,𝑡)

−

∗ 𝑃𝑤𝑖𝑛𝑑𝐷𝑊(𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡))  

(4.29) 

𝜋29(𝑏𝑢𝑠𝑤𝑖𝑛𝑑,𝑡)
+ ≤ M ∗ 𝑍𝑝𝑜𝑠(𝑏𝑢𝑠𝑤𝑖𝑛𝑑,𝑡)  ∀𝑏𝑢𝑠𝑊𝑖𝑛𝑑 , ∀𝑡 (4.30) 

𝜋29(𝑏𝑢𝑠𝑤𝑖𝑛𝑑,𝑡)
+ ≤ −𝜋29(𝑏𝑢𝑠𝑤𝑖𝑛𝑑,𝑡) +  M (1 − 𝑍𝑝𝑜𝑠(𝑏𝑢𝑠𝑤𝑖𝑛𝑑,𝑡))   ∀𝑏𝑢𝑠𝑊𝑖𝑛𝑑 , ∀𝑡 (4.31) 

𝜋29(𝑏𝑢𝑠𝑤𝑖𝑛𝑑,𝑡)
− ≤ M ∗ 𝑍𝑛𝑒𝑔(𝑏𝑢𝑠𝑤𝑖𝑛𝑑,𝑡)  ∀𝑏𝑢𝑠𝑊𝑖𝑛𝑑 , ∀𝑡 (4.32) 

𝜋29(𝑏𝑢𝑠𝑤𝑖𝑛𝑑,𝑡)
− ≤ 𝜋29(𝑏𝑢𝑠𝑤𝑖𝑛𝑑,𝑡) +  M (1 − 𝑍𝑛𝑒𝑔(𝑏𝑢𝑠𝑤𝑖𝑛𝑑,𝑡))  ∀𝑏𝑢𝑠𝑊𝑖𝑛𝑑 , ∀𝑡 (4.33) 
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The final form of the dual slave problem is established as follow: 

Max Η(… ) + ∑ ∑ −𝜋29(𝑏𝑢𝑠𝑤𝑖𝑛𝑑,𝑡) ∗ 𝑃𝑤𝑖𝑛𝑑𝐹𝑐𝑎𝑠𝑡(𝑏𝑢𝑠𝑤𝑖𝑛𝑑,𝑡)

𝐵

𝑏𝑢𝑠=1

𝑇

𝑡=1

+ 𝜋29(𝑏𝑢𝑠𝑤𝑖𝑛𝑑,𝑡)
+ ∗ 𝑃𝑤𝑖𝑛𝑑𝑈𝑃(𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡) + 𝜋29(𝑏𝑢𝑠𝑤𝑖𝑛𝑑,𝑡)

−

∗ 𝑃𝑤𝑖𝑛𝑑𝐷𝑊(𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡)  

(4.34) 

Subject to: 

Equations   (4.1) - (4.2) , (4.4) 

(4.14) - (4.25) 

(4.30) - (4.33) 

With: 

𝜋29(𝑏𝑢𝑠𝑤𝑖𝑛𝑑,𝑡), 𝜋22(𝑡), π23(t) , π24(t,line), π25(t,line), π20(t,hr),

π19(t,hr,plnR), π18(t,hd,pln), π15(t,hd), π14(hd,t),

𝜋13(t,hd), 𝜋12(ℎ𝑑,𝑡), 𝜋11(t,hd), π10(t,hd) , π9(t,hd), π8(t,ncl),  

π7(t,ncl), π6(t,ncl), π5(t,ncl), π4(t,j), π3(t,j), π2(𝑡,j), π1(t,j) ≥ 0 

(4.35) 

𝜋17(ℎ𝑇,𝑡), π16(t,hd), π21(t,hr) are  free 

As mentioned, the solution methodology is based in the Benders’ decomposition 

framework, in which the master problem is solved iteratively by adding new constraints 

to cut off the infeasible or non-optimal solutions [91]. Within this method, the exact 

separation requires the reformulation of the bilinear sub-problem as a mixed-integer 

linear program. It is important to highlight that this approach is challenging due to the 

use of a large amount of integer decision variables. The definition of the Benders’s non-

optimal cuts (cuts that restrict the possible unit commitment solutions in order to avoid 

non-optimal outcomes) performed in this work is presented in eq. (4.36) - (4.38). Since 

the UC model use penalty power plants there is no need for the infeasible cuts. In eq. 

(4.36), 𝑧. 𝑙 is the value of the objective function of the slave problem for each iteration. 
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𝑐𝑢𝑡𝑐𝑜𝑛𝑠𝑡(𝑖𝑡𝑒𝑟)  

=   𝑧. 𝑙 

−   ∑ ∑ −𝑃𝑐𝑎𝑝(𝑗) ∗ 𝑈. 𝑙(𝑗,𝑡) ∗  𝜋1. 𝑙(𝑗,𝑡)  +  𝑃𝑚𝑖𝑛(𝑗) ∗ 𝑈. 𝑙(𝑗,𝑡)

𝑇

𝑡=1

𝐽

𝑗=1

∗  𝜋2. 𝑙(𝑗,𝑡)   

− ∑ ∑ −𝜋9. 𝑙(ℎ𝑑,𝑡) ∗ 𝑃ℎ𝑑𝑀𝑎𝑥(ℎ𝑑) ∗ 𝑉ℎ. 𝑙(ℎ𝑑,𝑡)  

𝑇

𝑡=1

𝐻𝑑

ℎ𝑑=1

+  𝜋10. 𝑙(ℎ𝑑,𝑡) ∗ 𝑃ℎ𝑑𝑚𝑖𝑛(ℎ𝑑) ∗ 𝑉ℎ. 𝑙(ℎ𝑑,𝑡) 

(4.36) 

 

𝑐𝑢𝑡𝑐𝑜𝑒𝑓𝑓𝑈(𝑖𝑡𝑒𝑟,𝑗,𝑡) =    −𝑃𝑐𝑎𝑝(𝑗) ∗ 𝜋1. 𝑙(𝑗,𝑡)  +  𝑃𝑚𝑖𝑛(𝑗) ∗  𝜋2. 𝑙(𝑗,𝑡) (4.37) 

𝑐𝑢𝑡𝑐𝑜𝑒𝑓𝑓𝑉ℎ(𝑖𝑡𝑒𝑟,ℎ𝑑,𝑡)

=   −𝜋9. 𝑙(ℎ𝑑,𝑡) ∗ 𝑃ℎ𝑑𝑀𝑎𝑥(ℎ𝑑) +  𝜋10. 𝑙(ℎ𝑑,𝑡) ∗ 𝑃ℎ𝑑𝑚𝑖𝑛(ℎ𝑑) 
(4.38) 

The final form of the master problem, considering the non-optimal cuts, is shown in 

eqs.(4.39) - (4.40). 

Min   Θ 

Subject to: 

• Turn on eq. (3.11) 

• Turn off eq. (3.12) 

• Min time off eq. (3.14) 

• Min time on eq. (3.15) 

• Binary variables eq. (3.13) 

 

(4.39) 
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Θ  ≥ ∑ ∑ 𝐶𝑆𝑑(𝑗) ∗ 𝑈𝑂𝑓𝑓(𝑗,𝑡) + 𝐶𝑜𝑙𝑑𝑆(𝑗) ∗ 𝑈𝑂𝑛(𝑗,𝑡) + 𝑈(𝑗,𝑡) ∗ 𝐼𝑛𝑑𝐵(𝑗)

𝐽

𝑗=1

 

𝑇

𝑡=1

 

+ 𝑐𝑢𝑡𝑐𝑜𝑛𝑠𝑡(𝑐𝑢𝑡𝑠𝑒𝑡) +  ∑ ∑ 𝑐𝑢𝑡𝑐𝑜𝑒𝑓𝑓𝑈(𝑐𝑢𝑡𝑠𝑒𝑡,𝑗,𝑡) ∗ 𝑈(𝑗,𝑡)

𝐽

𝑗=1

 

𝑇

𝑡=1

+ ∑ ∑ 𝑐𝑢𝑡𝑐𝑜𝑒𝑓𝑓𝑉ℎ(𝑐𝑢𝑡𝑠𝑒𝑡,ℎ𝑑,𝑡) ∗  𝑉ℎ(ℎ𝑑,𝑡)

𝐻𝑑

ℎ𝑑=1

 

𝑇

𝑡=1

 

(4.40) 

Finally, the presence of non-convex terms in the slave problem can prevent Benders 

decomposition from guaranteeing the attainment of global optimality. Therefore, a 

Monte Carlo sampling approach is used to assess the quality of the solutions achieved. 

A schematic diagram of the solution methodology is presented in Figure 4.3, and the 

problem formulation and solution algorithm are implemented in GAMS. 

 

Figure 4.3 Solution methodology -Benders’ decomposition Framework.  

Initialization, UB=Inf, LB=-Inf

Solve slave dual problem; Definiton of UB

Cuts Definition

Converged
?

No

Yes

Add optimality cut,
Solve Master Problem; Definition of LB

Run Monte Carlo -
Robust UC fixed

UBmin = min (UB, UBmin)
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Chapter 5 

5.Case Studies  

This chapter presents the simulation results for the two models developed in this 

thesis: STORM and R-STORM. In the case of the deterministic UC Model (STORM), 

the analysis focused on validating the dispatch results of STORM considering the 

Brazilian power system. This validation was performed through numerical comparisons 

between the STORM dispatch and the power system dispatch made by the Brazilian 

power system operator (ONS). On the other hand, in the case of the Robust UC Model 

(R-STORM), two fictional systems were created in order to test the model’s ability to 

hedge against wind power uncertainty. The R-STORM performance was compared 

against its equivalent deterministic model (STORM) using a Monte Carlo sampling 

method. It is worth mention that STORM handles energy uncertainty by imposing levels 

of spinning reserve.  

5.1. Deterministic UC Model (STORM) Validation Analysis 

In the context of sustainable development, it is essential to ensure energy security 

while reducing GHG emissions and increasing resilience to both climate variability and 

climate change. Traditionally, the term energy security has been related to easy access 

of energy carriers like oil and/or gas, for example. However, in a low-carbon 

development pathway, where variable renewable energy resources become more 

relevant in the electrical power mix, taking a major role in energy security, it is crucial 

to improve the representation of renewable energy uncertainty and variability in both 

long- and short-term models. In this context, the STORM model contributes to ongoing 

efforts to develop a soft-link between the BLUES9 Model, COPPE’s national integrated 

assessment model (IAM) and a short-term model for the power sector. The STORM 

                                                 

9 BLUES is a linear optimization energy model developed at CENERGIA Lab of the Energy Planning 

Program, Universidade Federal do Rio de Janeiro, for the Brazilian energy system using the MESSAGE 

(Model for Energy Supply Strategy Alternatives and Their General Environmental Impacts) platform 

developed by IIASA (International Institute for Applied System Analysis) [161]. 
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model can represent, in a simplified but representative way, the characteristics of the 

Brazilian power system. Therefore, this model can be used as a tool to analyze potential 

system limitations for the integration of high levels of renewable energy and/or to assess 

the technical viability of renewable energy penetration pledges produced by integrated 

energy models. In other words, the link of a dispatch model with a national IAM offers 

the possibility of evaluating how likely transformation pathways, proposed by energy 

models, are indeed technically achievable. 

In order to validate the STORM model, a comparative analysis was performed 

between the actual dispatch made by the Brazilian power system operator (ONS) and 

some of the STORM’s results for the Brazilian power system. To perform this, a day for 

each trimester of 2019 was chosen. The selected dates were: January 15th, April 15th, 

July 15th and October 4th10. The main exogenous input data considered to build this 

economic dispatch model are described in Section 5.1.1 and in the Appendices. 

However, in order to perform a fair comparison, the input deck for wind power 

generation, solar PV generation, power demand and reservoirs initial volume were 

updated based on the data reported by ONS [155] for the scheduled days.  

5.1.1. Inputs and assumptions 

The main Exogenous input data considered to build the short-term model are briefly 

described in the following subsections.  

a. Electricity Demand 

The hourly demand curve for each grid bus was based on [139]11. The future demand 

scenarios are a by-product of the iNoPa project [140], in which the MESSAGE v.1.3 

(MSB-300) model was used. The Brazilian demand data was update considered an 

annual growth for 2015-2020 of 2.65%. This study considered the scenario for the year 

2019. Finally, the Brazilian aggregated demand was divided by bus based on [141]. 

b. Characteristics of electricity generation technologies 

Existing capacities were implemented based on [142], [143]. In the case of new 

power plants and power line projects, they were defined according to [129], [134] and 

                                                 

10 The data for the comparative analysis was gathered on October 6th of 2019, this is the reason for not 

had not choose October 15th as the fourth day. 
11 Personal communication 
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[144]. The installed capacity for the considered technologies is summarized in Table 5-1 

and Table 5-2.  

Table 5-1. Installed Capacity by bus for the Brazilian Power System (MW) – Scenario for 2019. 

 Installed Capacity (MW) 

Power Plant* Bus-1 Bus-2 Bus-3 Bus-4 Bus-5 Bus-6 Bus-7-8 Bus-9 Bus-10 

ST-BIO - 254.8 22.5 - - - 235.2 - 334 

ST-COAL 1080 360.1 - - - - - - 1388.2 

OGT-GAS 594.5 907.4 863.6 - - - 1829.2 - 1279.3 

CCGT-GAS 4280 499.2 932.9 - - 529.2 4448.2 - 1758.4 

ICG 2684.2 331.8 407.5 - - 426.4 664.6 - 8.0 

Hydro-RES 2927.3 1727 8650 - 216.5 - 21570.3 - 8457.7 

Hydro-ROR 7891.6 14088.9 2588.4 11233.1 7324.7 1820 12691.8 10800 7561.8 

SU-Hydro 209.6 359.2 - - 134.6 - 4962.8 - 2659.7 

SU-Thermal 1388.1 110.1 551.2 - 82.2 1081.4 9216.6 - 964.9 

NUC-UR - - - - - - 1990 - - 

Wind Pwr 12613.6 - - - - - 127.8 - 2242.3 

PV Solar Pwr 1979 - - - - 210 570 - - 

* The full thermal power plant names are divided in two parts: technology + fuel. The 

technologies are combined cycle – CC, Open cycle – OGT, Steam turbine –ST, Internal 

combustion generator –IC, Nuclear power -NUC. Hydro-RES stands for hydropower units with 

reservoir, Hydro-ROR for run-of-river hydropower units and SU for small units. 

Table 5-2 Installed capacity by technology for the 2019 scenario*. 

Power Source** #Units Installed Capacity (MW) % of total installed capacity 

ST-BIO 5 846.5 0,5% 

ST-COAL 12 2828.3 1,5% 

OGT-GAS 23 5474 2,9% 

CCGT-GAS 24 12447.9 6,7% 

ICG 41 4522.5 2,4% 

Hydro-RES 61 43548.8 23,3% 

Hydro-ROR 102 76000.3 40,6% 

SU-Hydro - 8325.9 4,4% 

SU-Thermal - 13394.5 7,2% 

NUC-UR 2 1990 1,1% 

Wind Pwr - 14983.7 8,0% 

PV Solar Pwr - 2759 1,5% 

*[129],[142]. 
**The thermal power plant names are divided in two parts: technology + fuel. The 

technologies are combined cycle – CC, Open cycle – OGT, Steam turbine –ST, Internal 

combustion generator –IC, Nuclear power -NUC. Hydro-RES stands for hydropower units with 

reservoir, Hydro-ROR for run-of-river hydropower units and SU for small units. 
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Typical costs and parameters for the operational restrictions of thermal power 

technologies such as: ramp-up, ramp-down, minimum up-time, minimum down-time, 

minimum and maximum load rate; required for the unit commitment optimization 

model are provided by Table 5-3 and Table 5-4. More specific technical parameters for 

the development of STORM applied to the Brazilian power system are presented in the 

Appendices. 

Table 5-3. Thermal Power Plant Technical Parameters. 

Power Plant Technical Parameters** 

Type of 

thermal 

unit 

Min 

Stable 

level 

(%) 

Max. 

Ramp 

Up/down 

(%/h) 

Start-

up 

Ramp 

(%/mi

n) 

Efficienc

y 

at 100% 

of 

Capacity 

(%)* 

Efficienc

y 

at 75% 

of 

Capacity 

(%)* 

Efficienc

y 

at 50% 

of 

Capacity 

(%)* 

Min. 

Up 

Time 

(h) 

Min. 

Down 

Time (h) 

ST-BIO 40 25 40 36.2 35.4 33 6 4 

ST-

COAL 
40 25 40 36.2 35.4 33 6 4 

OGT-

GAS 
50 60 50 38 33.6 28.7 0-1 0-1 

CCGT-

GAS 
35 30 35 54.5 49.7 47.1 4 2 

ICG 50 60 50 46 44 42 1-2 1-2 

NUC-

UR 
60 12 - - - - - - 

*Efficiency curve based on [32]. 

** data based on [145]. 

 

Table 5-4. Power Plant Economical Parameters. 

Power Plant Economical Parameters** 

Type of 

thermal 

unit 

Startup cost 

($/MW) 

O &M Variable 

Cost ($/MWh) 

Shut-down cost 

($/MW) 

Fuel price 

(USD$/MMBTU)* 

ST-BIO 8.63 12 8.63 1.47 

ST-COAL 8.63 6.3 8.63 2.76 

OGT-GAS 1.04 5.8 1.04 8.02 

CCGT-GAS 2.07 4.9 2.07 8.02 

ICG 1.04 14.2 1.04 35.59 

Hydro-RES - 5.94 - - 

Hydro-ROR - 6.02 - - 

NUC-UR 16.16 31.66 16.16 7.92 

*Based on[134]. 

**Based on [146], [147]. 
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c. Reservoir information and hydropower generation 

To accurately represent hydropower reservoirs the following parameters were 

considered: i) maximum and minimum reservoir volume  levels, ii) minimum flow 

requirement, iii) maximum flow discharge, and iv) cascaded configuration and time 

travel. The data for each reservoir was taken from [148], [127], [149], [150] and is 

presented in Appendix B. The inflow of the hydropower plants was computed using the 

average monthly natural inflow from ONS [151]. Technical and economic parameters 

for hydropower plants with reservoir are presented in Appendix B and for run-of-river 

plants in Appendix C. 

d. Transmission System characteristics 

To describe the Brazilian transmission system, a simplified and equivalent electric 

grid between the major energy markets is considered. The power grid, based on [129], 

has twelve equivalent nodes and it is presented in Figure 5.1. Operational restrictions to 

existing and new transmission capacities between regions were implemented based on 

[129] and presented in Appendix E. 

 

Figure 5.1 Equivalent Brazilian transmission system [129] 

The single line diagram of the transmission grid is presented in Figure 5.2. 
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Figure 5.2 Equivalent transmission system – Single line diagram.  

e. Wind Energy 

The wind energy data used in this work are a by-product of [133] and [134]. These 

studies used time series of wind speeds, ambient temperature and pressure from 

Meteonorm [135] and SWERA/NREL [136]. It was used the power curve of a 2.3MW 

wind turbine. The parameter 𝑃𝑤𝑖𝑛𝑑𝑃𝑈𝑤𝑛,𝑡 is the normalized hourly profile for 25 wind 

hotspots (show in Table II-10). The hourly wind forecasted generation of each hotspot 

is obtained by multiplying its installed capacity (𝑊𝑖𝑛𝑑𝐶𝑎𝑜𝑤𝑛) by the hourly profile. 

The total forecasted wind energy for each bus (𝑃𝑤𝑖𝑛𝑑𝐹𝑐𝑎𝑠𝑡) is the sum of all wind 

energy hotspots connected to bus b as shown in eq.(3.58). The used data are showed in 

Appendix F.  

Since the UC model considers an equivalent transmission grid (Figure 5.2), the 25 

hotspot of Table II-10 were aggregated in six equivalent wind hotspots according to 

their geographic location and seasonality. The equivalent wind hotspots are defined as 

follow: i) three equivalent hotspots in the Brazilian North East associated with Bus B1, 
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ii) one equivalent hotspot in the Brazilian South East associated with Bus B7-8 and iii) 

two equivalent hotspots in the south associated with bus B10. 

f. Solar PV Generation 

The solar PV energy data used in this work are a by-product of [133] - [134]. 

Similarly to the pre-processing done for wind energy, the 22 solar hotspots of these 

references were grouped into six equivalent hot spots: i) one equivalent hotspot 

representing the North East region (linked to bus B1), ii) two equivalent hotspots for the 

North region (linked to bus B3 & B5), iii) one equivalent for South East region (linked 

to bus B7-8), iv) one equivalent hotspot for the Midwest region (linked to B6) and v) 

one equivalent hotspot for the South (linked to B10). The used data are show in 

Appendix F.  

g. Small generation plants  

The generation of each plant in this category is obtained by multiplying its installed 

capacity by the seasonal generation profile given by [138]. The used data are show in 

Appendix F.  

5.1.2. Case Study Results  

Results presented in Figure 5.3 correspond to the aggregated energy generation of the 

dispatch defined by STORM for each day. It is important to highlight that STORM 

offers as results hourly power generation of each one of the considered power 

generation plants, and that an aggregation was made by type of energy source in order 

to allow for a straight forward comparison with the available public data reported by 

ONS12.  

                                                 

12 The available public data of the hourly historical generation is presented grouped by type of source. 
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Figure 5.3  STORM model Dispatch for the 4 representative days considered in the 

validation analysis. 

The first comparison between the STORM results and the ONS operative dispatch 

was made considering the daily cumulative dispatched energy. This comparison is 

presented in Table 5-5. As can be seen, the average difference between the two sets of 

dispatch results was less than 5% for all the generation technologies. Differences 

between the two sets were expected. However, the fact that they are not so large attests 

that the model results are reasonably close to real-life dispatch. One reason for the 

differences could be the fact that STORM considers an equivalent transmission grid 

topology and not the detailed Brazilian transmission grid. Moreover, as can be seen in 

the weekly planning of power system operation presented by ONS, for the analyzed 

days, an important parcel of the operative dispatched thermal power generation was 

defined based on non-economic dispatch decisions for system reliability purposes 

(electrical grid13 and/or GenCos14 restrictions). In this sense, the ratio between non-

economic thermal power energy dispatched and the total thermal power energy 

dispatched by the ONS is presented in Table 5-6. Therefore, even though variable 

operating costs are the primary driver of the dispatch decisions made by an electric 

power system operator, real-life factors can lead to deviations from the economic 

optimal dispatch curve.  

                                                 

13 Operative limitation on equipment, installations or systems that must be considered in a given period. 
14 Mandatory dispatch amount asked from the power generation company (GenCos) in order to meet the 

requirements solicited by the system operator. 
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Table 5-5. Daily accumulative results of the Brazilian power dispatch.  

 Source Hydro Pwr Thermal Pwr Wind Pwr Nuclear Pwr Solar Pwr 

Day1- Energy 

dispatched 

(%) 

ONS 82.88 8.09 5.79 2.65 0.60 

STORM 83.97 7.19 5.79 2.44 0.60 

│Delta│ 1.09 0.9 0 0.21 0 

Day2- Energy 

dispatched 

(%) 

ONS 81.54 9.65 5.45 2.70 0.66 

STORM 84.08 7.08 5.45 2.73 0.66 

│Delta│ 2.54 2.57 0 0.03 0 

Day3- Energy 

dispatched 

(%) 

ONS 68.72 17.20 9.94 3.33 0.81 

STORM 75.32 10.81 9.94 3.12 0.81 

│Delta│ 6.60 6.39 0 0.21 0 

Day4- Energy 

dispatched 

(%) 

ONS 64.87 18.02 13.18 2.99 0.94 

STORM 71.14 11.96 13.18 2.79 0.94 

│Delta│ 6.27 6.06 0 0.20 0 

       

│Delta│Average (%) 4.12 3.98 0.00 0.16 0.00 

Table 5-6 also shows the evaluation of ∆𝑔𝑒𝑛, as defined by (5.1), for each of the days 

considered for STORM validation. Once ∆𝑔𝑒𝑛 determines the ratio between the thermal 

energy generation difference and the total thermal energy dispatched by ONS, a 

straightforward comparison among the two sets of percentage values can be performed. 

As can be concluded from this comparison, it is likely that the divergence between the 

STORM and ONS dispatches is lower than the non-economic operative dispatch.  

∆𝑔𝑒𝑛 =
𝑇ℎ𝑒𝑟𝑚𝑎𝑙𝑂𝑁𝑆 (𝑀𝑊ℎ) − 𝑇ℎ𝑒𝑟𝑚𝑎𝑙𝑆𝑇𝑂𝑅𝑀(𝑀𝑊ℎ)

𝑇ℎ𝑒𝑟𝑚𝑎𝑙𝑂𝑁𝑆(𝑀𝑊ℎ)
 (5.1) 

Table 5-6. Non-economic thermal energy (nuclear energy included) dispatched*. 

Operational week 

Ratio between Non-

economic thermal 

energy and Total 

thermal energy 

Simulated day ∆𝑔𝑒𝑛 

12/01/2019-

18/01/2019 
24.5% 15/01/2019 

8.5% 

13/04/2019-

19/04/2019 
14% 15/04/2019 

20.6% 

13/07/2019-

19/07/2019 
40.2% 15/07/2019 

32.5% 

28/09/2019-

04/10/2019 
45.7% 04/10/2019 

28.9% 

*Data took from [156]. 
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From this analysis it can be argued that STORM properly represents the Brazilian 

power system for the proposed goal of being a tool to assess the technical viability of 

the renewable energy penetration pledges produced by long-term energy models. 

The differences between the two power dispatches can be seen with more detail in 

the second comparison, presented in Figure 5.4, in which the hourly profile of the 

dispatched hydro, nuclear and thermal power resources are examined. As can be seen, 

the nuclear generation follows the profile of the real dispatched curve. In the case of the 

hydropower generation, some hydropower energy is displaced as a result of the thermal 

power energy profile. For instance, it is noted that for days 1 and 2, which have low or 

medium levels of non-economic thermal power energy due system reliability purposes, 

STORM’ results have a better match with the ONS dispatch. However, for day 3 and 

day 4 the dispatch is quite influenced by the high levels of non-economic thermal power 

energy that, according to Table 5-6, are about 40% and 45%, respectively. 

One way to improve the STORM model in order to approximate its hourly results 

with the real dispatch of ONS is to adjust the model by adding a constraint that 

indicates, based on historical non-economic thermal generation data, which thermal 

power plants should be kept online based on stability requirements. This constraint is 

sometimes called as “special electrical restrictions” and can be adjusted by the user. 

Nonetheless, this kind of adjustment is outside the focus of this thesis. Then, 

considering the discussion presented in this section, it is argued that the STORM model 

can represent the main characteristics of the Brazilian power system, in such a way that 

it can be used as a tool to analyze and better understand market interactions, electricity 

costs and possible impacts of national energy policy/regulatory initiatives. 
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Figure 5.4 Hourly profile of the dispatch of hydro and thermal power resources. 

The next section focuses on the validation of R-STORM model. In this context, it is 

worth highlight that due to the high computational complexity of the Robust approach 

and a limited access of a high-performance cluster computation unit, it was decided to 

employ two fictional case-study systems for this analysis, rather than the Brazilian 
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system representation used in this section. A computational performance analysis of R-

STORM is presented in Section 5.2.3. 

5.2. Robust UC Model (R-STORM) simulation analysis  

This section presents the numerical results of the application of the R-STORM model 

(detailed in Chapter 4) for the simulation of two Case Study Systems (system A and 

system B), described next. Both cases correspond to hydrothermal power systems with 

cascade configuration; however, system B imposes a greater number of variables and 

restriction, which allows to obtain insights about the computational performance of R-

STORM. The capability of R-STORM to determinate robust unit commitment 

decisions, considering wind power uncertainty and variability, was evaluated using a 

Monte Carlo sampling approach. For comparison reasons, the same Monte Carlo 

sampling approach was applied to the unit commitment results of a deterministic 

optimization model that takes into account all the restrictions of R-STORM and an 

additional restriction related to spinning reserve capability but disregards wind power 

generation uncertainty. All the experiments were implemented using CPLEX at IBM / 

Lenovo NextScale Cluster (2015) from the Potsdam Institute for Climate Impact 

Research (PIK). 

The thermal power generators for system A are the first seven plants listed in Table 

5-7, while for System B, all plants listed in the same table are considered; additional 

characteristics are presented in Section 0. The considered hydropower plants are listed 

in Table 5-8. The selection of the hydropower plants was made so all generation buses 

of the electrical grid have at least one power plant. Additional technical data are 

presented in Section 0 and Appendices B to D. The Installed capacity of Belomonte-

Mod and Itaipu 60Hz-Mod is 5% of the installed capacity of Belomonte and Itaipu 

60Hz, respectively. The electrical grid data are the same considered for the deterministic 

model presented in 3.2.4 and 3.2.5, which considers the same 12-bus electrical power 

system. 

Table 5-7. Technical and economic data of thermal generation plants*.  

Power Plant** 
Upper 

(MW) 
Lower (MW) Min-up (h) 

Min-down 

(h) 

Ramp 

(MW/h) 

TEPE-CC-GAS 533.0 186.5 4 2 159.9 

CAMA-GT-

GAS 
346.5 173.2 0 0 207.9 
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MAR-CC-GAS 529.2 185.2 4 2 158.7 

BAR-GT-GAS 385.6 192.8 0 0 231.3 

VIA-IC-HFO 174.6 87.3 1 1 104.7 

CAN-ST-

COAL 
350.0 140.0 6 4 87.5 

ANG1-NUC-

UR 
640.0 384.0 48 48 76.80 

PECEM1-ST-

COAL 
720.0 288.0 6 4 180.0 

PERN-IC-HFO 201.0 100.5 0 0 120.6 

GERI-IC-HFO 165.9 82.9 1 1 99.5 

MARIV-GT-

GAS 
337.6 168.8 0 0 202.5 

POR-ST-COAL 360.1 144.0 6 4 90.0 

APA-GT-GAS 251.5 125.7 0 0 150.9 

CRI-IC-GAS 85.5 42.7 2 2 51.3 

MAU-CC-GAS 583.0 204.0 4 2 174.9 

BRA-IC-HFO 10.0 5.0 1 1 6.0 

AUR-CC-GAS 226.0 79.1 4 2 67.8 

IPA-ST-BIO 76.0 30.4 6 4 19.0 

ARA-CC-GAS 484.1 169.4 4 2 145.2 

KLA-ST-BIO 330.0 132.0 6 4 82.5 

ARJ-GT-GAS 41.2 20.6 0 0 24.7 

* Cells with orange background color refer to generation plants of system A; all the generation plants are 

considered in system B. 

** The full power plant name is divided in three parts: name + technology + fuel. The technologies are 

combined cycle – CC, Open cycle – GT, Steam turbine –ST, Instant combustion –IC. 

Table 5-8.Hydropower plants (hd- with reservoir and hr – run-of-river). 

Power plant* type 
Installed Cap. 

(MW) 
Power plant* type 

Installed Cap. 

(MW) 

BALBINA hd 250 CANA BRAVA hr 450 

SERRA DA MESA hd 1275 BELO MONTE-Mod hr 550 

BARRA GRANDE hd 698 ITAIPU 60 HZ-Mod hr 540 

I. SOLT. EQV hd 4251 14 DE JULHO hr 100 

TRÊS MARIAS hd 396 BEM QUERER hr 708 

QUEIMADO hd 105 ITAPEBI hr 450 

SOBRADINHO hd 1050 AIMORÉS hr 330 

SAMUEL hd 250 SÃO SALVADOR hr 243 

PEIXE ANGICAL hd 452 --   

*Cells with orange background color refer to generation plants of system A; all the generation plants are 

considered in system B. 

The seasonal data, i.e. demand, biomass generation and wind power generation data 

for systems A and B, used in this thesis are by-products of technical works [133] and 

[134]. More specifically, a typical day of July of 2015 was selected as the time 

reference for the hourly data. Concerning wind power generation, three equivalent wind 
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hotspots (NE1, NE2 and NE3) were defined based on the wind hotspots from the 

Brazilian Northeast region, established in Table II-10. In this context, NE1 equivalent 

hotspot considers the HS1-HS4 hotspots; equivalent hotspot NE2 considers the HS5-

HS10 hotspots; and equivalent hotspot NE3 consider the HS11-HS12 hotspots.  

As shown in Section 4.1.1, the generation data of all wind hotspots showed 

homoscedasticity within the first and the second semester. Therefore, the definition of 

upper and lower bounds of the wind power uncertainty set was based on data for the 

second semester of 2015. Figure 5.5 shows that the 95th and 5th quantiles for the wind 

power of the Brazilian Northeast were almost fixed values. This analysis was also made 

for each one of the hotspots H1-HS10 individually and the results were very similar. 

Based on this, the upper and lower bound were defined for both data sets as presented in 

Figure 5.6. 

  

 
Figure 5.5  Equivalent hotspots for the Brazilian Northeast. 

All the equivalent hotspots (NE-1, NE-2 and NE-3) were integrated into the modeled 

power system at 𝑏𝑢𝑠 B1 for both case studies. Therefore, 𝑏𝑢𝑠𝑊𝑖𝑛𝑑 = 𝐵1. In this sense, 

the corresponding total energy injection was defined as the sum of the energy generated 

by the three equivalent wind hotspots presented in Figure 5.5. The wind power installed 

capacity varies according to the system: for system A it is 1,261 MW and for system B 

it is 6,307 MW. Considering the uncertainty set presented in Figure 5.6, the level of 
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conservatism was adjusted with the uncertainty budget (𝐵𝑔𝑡𝑏𝑢𝑠𝑊𝑖𝑛𝑑), a parameter that 

defines the number of periods in which wind power deviates from its forecasted value to 

the upper or lower level. In this context, six uncertainty budgets (𝐵𝑔𝑡𝑏𝑢𝑠𝑊𝑖𝑛𝑑 = 0, 2, 4, 

6, 8, and 10) were considered for the simulation studies carried out for both systems.  

Based on the mathematical analysis presented by [68] and equation (2.6), the 

probability of non-constraint violation given an uncertainty budget (𝐵𝑔𝑡𝑏𝑢𝑠𝑊𝑖𝑛𝑑), i.e. 

the probability that a Robust UC solution obtained by using 𝐵𝑔𝑡𝑏𝑢𝑠𝑊𝑖𝑛𝑑 is feasible for 

all possible wind power realizations within the upper and lower bounds of the 

uncertainty set, for the case of 24 uncertain variables (the hourly wind power profile 

over a day period) is shown in Table 5-9. It is important to highlight that, as described 

by (4.3), to set the uncertainty budget to zero is equivalent to consider no variation in 

the wind energy profile. Therefore, this operation mode of R-STORM (𝐵𝑔𝑡𝑏𝑢𝑠𝑊𝑖𝑛𝑑 =

0) is equivalent to a deterministic UC solution without spinning reserve. 

Table 5-9.Probability of NON constraint violation for different uncertainty budgets. 

Budget 2 4 6 8 10 

Probability 68.4% 79.1% 88.8% 94.8% 97.9% 

 

 

(a) 

 

(b) 

Figure 5.6 Wind energy output – (a) System A; (b) System B. 
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Monte Carlo sampling approach 

As mentioned at the beginning of this chapter, the validation of the robustness of R-

STORM UC solutions was performed through a Monte Carlo (MC) sampling approach. 

This MC sampling aims to create thousand (1000) random scenarios for each 

uncertainty budget and wind forecasted generation profile, under the model of wind 

power generation uncertainty. Therefore, considering the upper and lower levels of the 

uncertainty set defined by Figure 5.6, it can be argued that the scenarios covered by this 

MC sampling are highly demanding, once a variation in almost the entire range of wind 

generation is allowed.  

The methodology of this analysis is presented in Figure 5.7. As can be seen, the 

methodology consists in, once the status of the binary variables that indicate the thermal 

and hydropower plants that are online at a given time period (𝑈𝑗,𝑡 and 𝑉ℎℎ𝑑,𝑡, 

respectively, also known as first stage solution) are maintain fixed, determinate the 

dispatch solutions (i.e. second stage solutions) considering a set of random wind 

generation scenarios, created considering uncertainty budget parameter (𝐵𝑔𝑡𝑏𝑢𝑠𝑊𝑖𝑛𝑑). 

The generation of the Monte Carlo sampling wind generation scenarios follows the 

formulation of (5.2), previously used [35]. In (5.2) a random variable 𝑟𝑚𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡,𝑀𝐶𝑠 is 

generated for each Windbus, time period and random scenario, using a uniform 

distribution over [0, 1]. According to the value of 𝑟𝑚𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡, the binary variables that 

indicate if the wind power deviates to the upper or lower level of the uncertainty 

(𝑍𝑝𝑜𝑠𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡 and 𝑍𝑛𝑒𝑔𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡) are stablished. Once (5.2) was applied to all the 

time instants over the analysis period (𝑇), the inequation ∑ 𝑍𝑝𝑜𝑠𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡 +𝑇
𝑡=1

𝑍𝑛𝑒𝑔𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡 ≤ 𝐵𝑔𝑡𝑏𝑢𝑠𝑊𝑖𝑛𝑑 is verified. If this inequation is true, then binary 

𝑍𝑝𝑜𝑠𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡, 𝑍𝑛𝑒𝑔𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡 set is valid and used to calculate the dispatch solution; if 

the inequation is false, (5.2) is reevaluated for each time instant.  

𝑍𝑝𝑜𝑠𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡 = 0;  𝑍𝑛𝑒𝑔𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡 = 1,   if 𝑟𝑚𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡 ≤ 𝐵𝑔𝑡𝑏𝑢𝑠𝑊𝑖𝑛𝑑 2𝑇⁄ ; 

𝑍𝑝𝑜𝑠𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡 = 1;  𝑍𝑛𝑒𝑔𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡 = 0,   if 𝑟𝑚𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡 ≥ (1 − 𝐵𝑔𝑡𝑏𝑢𝑠𝑊𝑖𝑛𝑑 2𝑇⁄ ) ; 

𝑍𝑝𝑜𝑠𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡 = 0;  𝑍𝑛𝑒𝑔𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡 = 0,   otherwise. 

(5.2) 
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The second stage solution, i.e. the dispatch solution, varies based on the values of 

𝑍𝑝𝑜𝑠𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡 and 𝑍𝑛𝑒𝑔𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡 generated by the Monte Carlo sampling.  

 

Figure 5.7 Monte Carlo sampling methodology. 

For comparison reasons, the described Monte Carlo sampling approach was applied 

to two optimization models: 

a) STORM model with the data base of Systems A and B, as it corresponds 

(deterministic approach with spinning reserve).  

b) R-STORM with uncertainty budget zero (deterministic approach without 

spinning reserve); and with uncertainty budgets 2, 4, 6, 8 and 10 (robust 

approach); 

The uncertainty budget definition for Monte Carlo sampling analysis follows the 

value used by the R-STORM model that is 2, 4, 6, 8 or 10 as it corresponds for each 

simulation case.  

5.2.1. Case Study-System A 

System Description 

The first case study considers the power system shown in Table 5-10 and Figure 5.8. 

This case study includes six thermal power plants distributed between buses B1, B6, 

B7-8 and B10, one nuclear power plant at B7-8, one wind farm at B1 and 5 hydropower 

plants distributed between buses  B2, B3, B4 and B9, wherein the two hydropower 

plants at B2 operate in cascaded mode. The operation of small hydro and thermal power 

plants is considered seasonally and, therefore, remains constant during the simulation 

time. In order to avoid infeasibilities, flexible and expensive thermal plants, called 
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Penalty plants, are considered at B1-B3, B6, B7-8 and B10. The simulation time 

horizon (𝑇) is 24 hours. 

Table 5-10 Power mix for system A. 

Power Source* #Units Installed Capacity (MW) % of total installed capacity 

ST-COAL 1 350 4.2% 

OGT-GAS 2 732.1 8.7% 

CCGT-GAS 2 1062.2 12.7% 

IC-HFO 1 174.6 2.1% 

Hydro-RES 2 1525 18.2% 

Hydro-ROR 3 1540 18.4% 

SU-Hydro - 416.295 5.0% 

SU-Thermal - 669.725 8.0% 

NUC-UR 1 640 7.6% 

Wind Pwr 1 1261 15.1% 

*The thermal power plant names are divided in two parts: technology + fuel. The 

technologies are combined cycle – CC, Open cycle – OGT, Steam turbine –ST, Internal 

combustion generator –IC, Nuclear power -NUC. Hydro-RES stands for hydropower units with 

reservoir, Hydro-ROR for run-of-river hydropower units and SU for small units. 

 

 

Figure 5.8  Case study – System A. 

The demand profile is showed in Figure 5.9. 



79 

 

 

Figure 5.9 Hourly demand for System A. 

Simulation Results 

Table 5-11 shows the R-STORM UC optimal solution for two uncertainty budgets, 

𝐵𝑔𝑡𝑏𝑢𝑠𝑊𝑖𝑛𝑑  = 0 (deterministic approach without spinning reserve) and 𝐵𝑔𝑡𝑏𝑢𝑠𝑊𝑖𝑛𝑑 =

10. In other words, Table 5-11 shows the status of the binary variables 𝑈𝑗,𝑡 and 𝑉ℎℎ𝑑,𝑡 

which define if thermal power plant 𝑗 and hydropower plant ℎ𝑑 are online for the 

simulation time 𝑡. As shown, the UC solution for budget 𝐵𝑔𝑡𝑏𝑢𝑠𝑊𝑖𝑛𝑑 = 10 demanded a 

higher number of online thermal generator plants than the UC solution for budget 

𝐵𝑔𝑡𝑏𝑢𝑠𝑊𝑖𝑛𝑑 = 0 for the same load profile. Even though this result implies a higher 

operation cost, this extra-cost translates into a more flexible system. 
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Table 5-11 Robust UC solution for System A.  
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1 0 1 1 0 0 1 1 1 

2 0 1 1 0 0 1 1 1 

3 0 1 1 0 0 1 1 1 

4 0 1 1 0 0 1 1 1 

5 0 1 1 0 0 1 1 1 

6 0 1 1 0 0 1 1 1 

7 0 1 1 0 0 1 1 1 

8 1 1 1 0 1 1 1 1 

9 1 1 1 0 1 1 1 1 

10 1 1 1 0 1 1 1 1 

11 1 1 1 0 1 1 1 1 

12 1 1 1 1 0 1 1 1 

13 1 1 1 1 0 1 1 1 

14 1 1 1 1 0 1 1 1 

15 1 1 1 1 0 1 1 1 

16 1 1 1 1 0 1 1 1 

17 1 1 1 1 0 1 1 1 

18 1 1 1 1 0 1 1 1 

19 1 1 1 1 0 1 1 1 

20 1 1 1 1 0 1 1 1 

21 1 1 1 1 0 1 1 1 

22 1 1 1 1 0 1 1 1 

23 1 1 1 0 0 1 1 1 

Figure 5.10 compares the operation cost of R-STORM UC solutions, as the 

uncertainty budget increases, against the Deterministic UC solution for the ideal 

situation in which the wind energy forecasted profile actually happens. As expected, 

this increased participation of thermal plants in the UC solution implies in operational 

cost rise. More specifically, as illustrated in Figure 5.10 in the robust solution the 

thermal operation cost can increase up to 27%. However, this additional thermal power 

generation means less hydropower energy used to meet the demand; which translates in 

more stored water in the reservoirs. An increment on the reservoir volumes represents a 

negative cost in the objective function (see eq. (4.7)). Therefore, the higher thermal 

operation cost is partially compensated with this negative hydropower cost and the 

increase in the total operation cost is lower. For example, in the case of the conservative 

approach (𝐵𝑔𝑡𝑏𝑢𝑠𝑊𝑖𝑛𝑑  = 10) the increase in the system operation cost is less than 10%. 
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𝐵𝑔𝑡𝑏𝑢𝑠𝑊𝑖𝑛𝑑  = 10 is a conservative approach once, as presented in Section 2.2.2, 

represents a UC Robust optimal solution with probability of constraint violation lower 

than 2%. 

 

Figure 5.10 Percentage increase of Robust UC cost vs Deterministic approach cost with NO 

spinning reserve for wind power equal to the forecasted wind profile. 

The temporal distribution of variables 𝑍𝑝𝑜𝑠𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡 and 𝑍𝑛𝑒𝑔𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡 that defines 

the worst- case scenario for wind power output in the case of 𝐵𝑔𝑡 = 10 is shown in 

Figure 5.11. As shown, all values of 𝑍𝑝𝑜𝑠𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡 are calculated as zero. This can be 

explained due to the fact that the forecasted value is closer to the upper bound than to 

the lower bound, as can be seen in Figure 5.6. Therefore, the system is more stressed by 

making the wind power output deviated to the lower bound, given that the resulting 

worst-case scenario will present higher ramp requirements.  

 

Figure 5.11 Distribution of 𝑍𝑝𝑜𝑠𝐵1,𝑡 and 𝑍𝑛𝑒𝑔𝐵1,𝑡 for the worst case scenario. 
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Figure 5.12 shows the results of the Monte Carlo sampling analysis for all the 

uncertainty budgets previously indicated (2, 4, 6, 8 and 10). As it can be seen, the R-

STORM UC solutions were able to handle satisfactorily the wind energy variability 

without the use of penalty plants in all the thousand Monte Carlo scenarios for each 

uncertainty budget. On the other hand, it could be observed that the UC solutions 

obtained by the deterministic model without spinning reserve were infeasible (i.e. 

penalty plants were turn on) for many Monte Carlo sampling cases in each uncertainty 

budget. These results show the superiority of the robust approach over the deterministic 

one regarding system reliability. This observation indicates that it could be shortsighted 

to rely on forecasted values overlooking the uncertainty of wind energy. For power 

system operations, which tend to be risk-averse, Robust optimization can be an 

interesting approach to tackle uncertainty and maintain system stability.  

 

Figure 5.12 Monte Carlo sampling results for deterministic and robust approaches considering 

different uncertainty budgets – System A. 

It can be derived from Figure 5.12 that the higher operational costs that the described 

robust optimization approach could cause are satisfactorily compensated by more 

flexibility. Furthermore, in the case of wind power deviations from the foreseen, the R-

STORM UC decisions are in fact more economically appropriate that the ones obtained 

by the deterministic approach. Nonetheless, this economical comparison could be 

considered as unfair since it does not consider any spinning reserve for the deterministic 
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model, which is a typical resource to deal with power balance uncertainties in power 

system operations. Therefore, additional comparisons in which different values of 

spinning reserve are established for a deterministic model were performed. For this 

analysis, the STORM model described in Chapter 3 with the data base of System A is 

employed. The spinning reserve definition of this model is done by eq. (3.57) in Section 

3.2.5  

The results of this analysis, showed in Figure 5.13, indicate that only when a 

spinning reserve (variable 𝑠𝑝𝑖𝑛 in the formulation of (3.57)) of 32% was set for the 

deterministic model this was feasible; i.e. no penalty plants were used in all Monte 

Carlo sampling events. 

 

Figure 5.13 Monte Carlo sampling sensibility analysis of required spinning reserve for the 

deterministic approach. 

Even though a spinning reserve level of 32% may seem as a high number, it is 

important to highlight that, as it can be seen in Figure 5.14, for some time periods of the 

day the wind energy at bus B-1 is responsible for meeting up to 43% of the total 

demand. Therefore, since the Monte Carlo sampling was focused in finding a spinning 

level that will be able to handle any variation of wind power, it was expected a 

significant amount of spinning reserve. Additionally, the definition of spinning reserve, 

showed in eq. (3.57), considers only the fraction of net load15 supplied by the following 

dispatchable power sources: thermal power plants (without considering nuclear power) 

                                                 

15 Net load is defined as the total load minus the power energy not supply by thermal power and 

hydropower units with reservoir. 
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and hydro power plants with reservoirs; different from other approaches where it is 

defined as a percentage of the total load. Another difference of the spinning reserve 

indicator considered in this work in contrast with other methodologies is that it is 

constant over the analyzed period. For future works it could be interesting to define a 

dynamic spinning reserve that varies through time.  

Although the introduction of spinning reserve in the deterministic model can allow 

feasible unit commitment decisions, considering the variability and uncertainty of wind 

generation, it is important to highlight that in the case of Robust optimization the power 

system operator would not have to define reserve requirements based on deterministic 

criteria, this because the Robust approach already considers the uncertain data and 

delivers the appropriate UC solution without spinning reserve constraints. 

 

Figure 5.14 Percentage of the load met by wind generation for 𝐵𝑔𝑡 = 0 and by the worst-case 

scenario with 𝐵𝑔𝑡 = 10. 

Finally, Figure 5.15 presents the system operation cost for the Monte Carlo sampling 

analysis for both Robust and Deterministic with spinning reserve of 32% optimization 

approaches. The difference between the total cost of the Deterministic approach and the 

total cost of the Robust approach is presented in Figure 5.16. As observed, the mean 

cost of the Monte Carlo events for all uncertainty budgets are lower using the Robust 

optimization method, which makes this approach a more cost-efficient solution. Even 

though some of the overcost of the deterministic approach could be originated by using 

a static value for the spinning reserve, this result also can be seen as a confirmation that 

defining the reserve requirement by some a priori system-wide rule can lead to an 

economically inefficient or even infeasible way to handle uncertainty. 
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Figure 5.15 Box plot Analysis for the Monte Carlo sampling results (Deterministic approach 

with spinning reserve of 32%). 

 

 

Figure 5.16 Box plot Analysis for the Monte Carlo sampling results (Deterministic approach 

minus Robust approach). 

 

5.2.2. Case study-System B 

Description 

The second case study is show in Table 5-12 and Figure 5.17. In contrast with the 

system A, this case considers twenty thermal power plants distributed along buses B1-3, 

B6, B7-8 and B10, a nuclear power plant at B7-8, a wind farm at B1 and seventeen 

hydropower plants at B1-5, B7-10 as power system generation plants. Two different 

configurations of cascade mode were included. The first one is at Bus B-2 considering 
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four hydropower plants and the second one at Bus7-8 considering three hydropower 

plants. The simulation time horizon is 24 hours. 

Table 5-12 Power mix for system B. 

Power Source* #Units Installed Capacity (MW) % of total installed capacity 

ST-COAL/BIO 5 1836,1 7,3% 

OGT-GAS 5 1362,48 5,4% 

CCGT-GAS 5 2355,3 9,3% 

IC-HFO 5 637 2,5% 

Hydro-RES 9 8694,2 34,5% 

Hydro-ROR 8 3371,7 13,4% 

NUC-UR 1 640 2,5% 

Wind Pwr 1 6307 25,0% 
*The thermal power plant names are divided in two parts: technology + fuel. The 

technologies are combined cycle – CC, Open cycle – OGT, Steam turbine –ST, Internal 

combustion generator –IC, Nuclear power -NUC. Hydro-RES stands for hydropower units with 

reservoir, Hydro-ROR for run-of-river hydropower units and SU for small units. 
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Figure 5.17  Case study System B schematic description. 
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The total demand profile is shown in Figure 5.18. The hourly profile was maintained 

but the demand was increase five times compared with that of system A. 

 

Figure 5.18  Hourly demand for System B. 

Results 

As presented for the results of system A, Table 5-13 shows the Robust UC optimal 

solution for two uncertainty budgets (𝐵𝑔𝑡𝑏𝑢𝑠𝑊𝑖𝑛𝑑 = 0 and 𝐵𝑔𝑡𝑏𝑢𝑠𝑊𝑖𝑛𝑑=10). It can be 

observed that the UC solution for budget 𝐵𝑔𝑡𝑏𝑢𝑠𝑊𝑖𝑛𝑑  = 10 demanded, once again, a 

higher number of online generator plants than the UC solution for budget 

𝐵𝑔𝑡𝑏𝑢𝑠𝑊𝑖𝑛𝑑  = 0. 

  

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

M
W

h

Hour

Demand Profile- System B 



89 

Table 5-13 Robust UC solution for System B. 
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7 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 

8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 

10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 

12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 

13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 

14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 

15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 

17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 

18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 

23 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 
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The temporal distribution of variables 𝑍𝑝𝑜𝑠𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡 and 𝑍𝑛𝑒𝑔𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡 that defined 

the worst- case scenario for wind power output in the case of 𝐵𝑔𝑡𝑏𝑢𝑠𝑊𝑖𝑛𝑑=10 is shown 

in Figure 5.19. Since the wind profile was maintained, the behaviour of the variables 

𝑍𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡 over the time is similar to those obtained for system A. In other words, the 

wind power output is also deviated to the lower bound in order to challenge the system 

operation. It is important to highlight, however, that the exact curve over the time 

differs from the one obtained in the case analysis A because of the introduction of new 

power sources with different power slope characteristics.  

 

Figure 5.19  Distribution of 𝑍𝑝𝑜𝑠𝐵1,𝑡 and 𝑍𝑛𝑒𝑔𝐵1,𝑡 for System B worst-case scenario with 

𝐵𝑔𝑡busWind=10. 

The Monte Carlo sampling analysis results for this case system are shown in Figure 

5.20. As can be seen, the Robust UC solution was again able to handle the wind energy 

variability and uncertainty without using penalty plants. In other words, it provides 

feasible solutions for all the Monte Carlo sampling scenarios of each uncertainty 

budget. The deterministic optimal solutions, on the other hand, had to turn on penalty 

plants in many sampling scenarios for all the uncertainty budgets considered. 
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Figure 5.20 Monte Carlo sampling sensibility analysis for different uncertainty budgets – 

System B. 

As performed for the case study A, a spinning reserve analysis, considering the 

deterministic model (STORM with system B database) was also performed, maintaining 

the same methodology. The result of this analysis indicated that the value of spinning 

reserve required to make the deterministic model feasible for all considered levels of 

uncertainty (i.e. uncertainty budgets 2, 4, 6, 8 and 10) is of 43%; this means that, 

according to eq. (3.57), the available generation by dispatchable thermal (without 

considering nuclear) and hydro generation plants should be 43% higher than the net 

load. 

In this analysis, wind energy also represents an important source to meet the demand. 

As shown in Figure 5.21, in some time periods of the day the wind energy at bus B-1 is 

responsible of meeting up to 43% of the total demand. 

 

Figure 5.21 Worst-case scenario for Budget 𝐵𝑔𝑡𝑏𝑢𝑠𝑊𝑖𝑛𝑑 =10 – System B. 
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The results of the Monte Carlo sampling analysis for the system operation cost are 

shown in are Figure 5.22 and Figure 5.23. It is observed that, once again, the Robust 

optimization model delivered the most cost-efficient solution (from an average 

perspective) for all considered levels of uncertainty. 

 

Figure 5.22 Box Analysis for the Monte Carlo sampling results (Deterministic approach with 

spinning reserve of 43%). 

 

 

Figure 5.23 Box plot Analysis for the Monte Carlo sampling results (Deterministic approach 

minus Robust approach). 

5.2.3. Computational performance  

In this section the computational performance of the R-STORM was tested for 

different uncertainty budgets. The computational time required for the simulation of 

each of the uncertainty budget considered in this study, for both case systems, is shown 
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in Figure 5.24. As can be seen, the computational time increases exponentially as the 

budget uncertainty increases. This can be explained, based on the experiments, by two 

main reasons: i) Even though the size of the slave problem remains the same for 

different uncertainty budgets, this problem needs more time to solve since its 

complexity is higher due to the larger number of combinatorial options for the binary 

variables 𝑍𝑏𝑢𝑠𝑊𝑖𝑛𝑑,𝑡 and ii) more Benders’ cuts are added to the master problem in order 

to solve the model as the uncertainty budget increases.  

 

Figure 5.24  Budget Sensibility analysis for both System A and B considering the time period 

simulation of 24 hours. 

Table 5-14 presents the model statistics for both case systems (A and B) with 

uncertainty budget equal to eight. As can be seen, the size of system B is some 3 times 

as high as that of system A, which explains the higher computational time difference 

between these two case studies. 

Table 5-14 Model Statistics considering 𝐵𝑔𝑡𝑏𝑢𝑠𝑊𝑖𝑛𝑑=8 and time period simulation T=24. 

 Type of 

prob. 

Block 

of eq. 

Block of 

var. 

Non zero 

elements 

Single 

eq. 

Single 

var. 

Discrete 

var. 

System 

A 

Master 

Problem 

7 6 128,739 1.145 471 469 

Slave 

Problem 

18 31 12,179 962 2,977 48 

System 

B 

Master 

Problem 

7 6 490,703 3.415 1,541 1,539 

Slave 

Problem 

18 31 34,869 2.618 8,017 48 
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As shown, even though the results presented in Sections 5.2.1 and 5.2.2 show that 

Robust optimization for hydrothermal UC problems can guarantee stability and 

feasibility for systems with wind power uncertainty, it can require significant 

computation effort, especially since both master and slave problems have binary 

decision variables. For future works, it could be interesting to implement an 

acceleration technique for Benders decomposition in order to facilitate the model 

application to large-scale power systems such as the Brazilian power system. 
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Chapter 6 

6. Conclusions and Future Work 

Demand for energy and associated services, to meet social and economic 

development and improve human welfare and health, is increasing. All societies require 

energy services to meet basic human needs such as lighting, cooking, space comfort, 

mobility, communication among others. At the same time, power sectors are evolving 

into low-carbon energy mix, with higher shares of renewable energy technologies. 

These intermittent technologies, however, bring operational challenges that must be 

addressed in order to maintain power system reliability. In this sense, energy modelers 

should take a deeper look at improving ways to better represent the variability and 

uncertainty of renewable generation. The ongoing energy transition can be the perfect 

scenario for policy makers and stakeholders to take action and deliver a more 

sustainable agenda. However, this agenda must be grounded on comprehensive data and 

advanced modelling techniques that portray the most critical power system 

characteristics.  

To decarbonise an economy is not a simple subtraction, it requires a completely 

overhaul, after all, the system grew up through the massive use of fossil fuels. The great 

challenge of the 21st century is to reverse the increase in emissions that the 20th century 

set in train and at twice the speed, without shrinking the economy in ways that 

compromise the system ability to meet the population needs. The damage that climate 

change will end up doing will depend on the human response over the next decade. We 

must be willing to transform the machinery of the world economy. The inclusion of 

sustainable investment products can help to manage exposure to climate change and 

reduce risk. 

In this sense, renewable energy deployment can play and important role within a 

portfolio of mitigation options. Renewable energy has a large potential to mitigate 

climate change, but also it can provide wider benefits to the population such as 

contribute to social and economic development, increase energy access, secure energy 
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supply, and reduce negative impacts on the environment and health. Integrating 

renewable energy into most existing energy supply systems and end-use sectors at an 

accelerated rate can be technologically feasible, though will result in several additional 

challenges. An option to reduce complexity and risk is to include the development of 

complementary flexible generation and flexible operation of existing schemes; improve 

short-term forecasting, system operation and planning tools. Therefore, in order to 

accommodate high renewable energy shares, energy systems will need to evolve and to 

be adapted. 

This thesis described the formulation and development of two power dispatch 

models: i) a deterministic hydrothermal economic dispatch model formulated as a large-

scale mixed-integer linear problem, called STORM, and ii) a Robust hydrothermal unit 

commitment model that considers wind power energy as an uncertainty parameter, 

called R-STORM. 

The STORM model represents with high detail the characteristics of the Brazilian 

generation system. Among this, an important feature of STORM is that it considers the 

hydraulic configuration of the Brazilian hydropower system i.e. the production function 

of hydro power plants and the flow balance including the cascade effect. The 

hydropower production function was model as a four-dimensional piecewise linear 

model that considers head variation in a single multivariate linear function of turbinated 

outflow, storage, and spillage. Additionally, the model does not impose that all wind 

power energy must be injected in the grid. That is, it allows wind curtailment in the case 

its use would represent a higher operation cost. In this model, the transmission system 

considers a DC power flow between the major Brazilian power markets. 

A validation of the STORM model was performed by comparing its proposed 

economic dispatch for four days (each one for a different trimester) against the actual 

dispatch made by the power system operator. As shown by the obtained results, the 

model provides a good approximation to the actual dispatch, where the main difference 

was observed for the dispatched thermal power generation. As discussed in Chapter 5, 

this can be explained based on the dispatch decisions of thermal power plants, on 

account of system reliability requirements, by the Brazilian system operator and also 

due to the simplified transmission system of STORM. As a matter of fact, for the days 

in which the non-economic dispatch of thermal generations reported by ONS was low 

(Day 1 and Day 2 in the comparison analysis), the difference between the energy 
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dispatched by STORM and the ONS dispatch, from hydro and thermal power,  was 

lower than 2.5% and for Day 3 and Day 4, which had higher levels of non-economic 

thermal dispatch, the difference was less than 7%. Therefore, it is possible to affirm that 

the STORM model, in a simplified and yet adequate way, represents the Brazilian 

power system characteristics and can be a tool to reach a deeper understanding of the 

impacts of renewable energy integration in the Brazilian electricity system and to 

analyze supply reliability and the impacts of energy policies, such as feed-in-tariffs, 

quotas, carbon pricing mechanisms, incorporation of external costs for environmental 

impact assessment, and technology pathways like demand response programs.  

Future research, related to the STORM model, includes: i) better specify thermal 

power units for the case study of the Brazilian power system, since most of the 

exogenous data for thermal power units was based on data available in the literature, ii) 

the improvement of the transmission grid representation by considering a more detailed 

electrical grid and iii) the development of a soft-link with the BLUES Model, COPPE’s 

national IAM (Integrated Assessment Model). This link will allow exploring national 

low-carbon development pathways, in order to ensure their technical feasibility. In other 

words, this link can facilitate the assessment of transformation pathways focused on 

accomplish GHG emissions reductions. A combined tool as the one mentioned has 

much importance in a low-carbon development pathway, where variable renewable 

energy resources become more relevant in the electrical power system. It is important to 

mentioned that STORM can be adapted for any power system, and it can be extremely 

useful to represent systems with high shares of hydropower. 

The R-STORM model, in turn, was formulated as a two-stage hydrothermal UC 

problem that deals with wind energy uncertainty using a Robust Optimization approach. 

This model has the objective of minimize the total operational cost under the worst 

wind power output scenario, while ensuring feasible solutions for all possible wind 

energy realizations within the model of data uncertainty, defined as a polyhedral set 

with a cardinality budget.  

To the author’s better knowledge, there is no literature related to Robust 

Optimization approaches applied to hydrothermal UC problems that considers the 

detailed operation of large water reservoirs for hydropower generation. This thesis 

tackled this gap by formulating and implementing a Robust UC model (R-STORM) that 

takes into account the main hydro power characteristics i.e. water balance with the 
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cascaded effect and a production function that considers variable net head and spillage 

effects.  

The methodology solution for the R-STORM model was based on scientific literature 

that employs Benders’ decomposition algorithm as a technique to obtain a robust UC 

solution for the day-ahead market. One of the difficulties to solve this robust problem 

stems from the bilinear block term presented in the dual slave problem, whose 

linearization was done using the big-M method, which translates the bilinear problem 

into a MIP problem. A Monte Carlo sampling approach was developed to evaluate the 

R-STORM performance under the model of data uncertainty and to compare the 

deterministic and Robust UC solutions.  

The presented results showed that the model provides robust optimal solutions that 

are feasible under wind power output uncertainty, which increase the power system 

flexibility. Furthermore, these results validated the robust operation of the R-STORM 

dispatch and showed that overlooking the uncertainty of wind power can lead to 

unfeasible situations which could translate into economical-inefficient solutions such as 

high levels of spinning reserve, use of expensive plants or load sheading. Additionally, 

it was shown that the R-STORM UC solution is economically attractive even in the 

ideal situation of exact correspondence between the forecasted and actual wind 

generation, in other words a situation in which the wind generation is certain. This work 

provides an excellent starting point for further studies on the use of Robust UC to 

hydrothermal systems like the Brazilian. 

A disadvantage of the R-STORM execution, on the other hand, is that its formulation 

represents much higher computational effort than its equivalent deterministic approach. 

It was showed that increasing the level of uncertainty causes exponential system 

complexity and higher computational requirements. In this sense, future research should 

include: i)  implementation of a technique to accelerate the Benders’ decomposition 

algorithm, ii) improvement of the approach for linearization of the bilinear terms, in 

order to avoid that the slave problem becomes a MIP formulation, iii) to update and 

extend the wind data information, perhaps using the forecasted error instead of wind 

energy as decision variable, in order better define the upper and lower bounds of the 

uncertainty set, iv) to analyze ways to model the correlations in wind power to better 

define the uncertainty set and v) to perform a deeper scalability analysis by adding more 

wind power farms connected at different buses. Additionally, comparisons using others 
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computational algorithms as solution methodologies, like Column and Constraint 

generation [85], are recommended as upcoming research efforts.  
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II. Appendices  

A. Fuel cost for thermal power plants  

Table II-1. Coefficients for the fuel-cost curve*. 

Power Plant 
𝐼𝑛𝑑𝐴𝑗 

($/Mwh) 
𝐼𝑛𝑑𝐵𝑗 ($) Power Plant 

𝐼𝑛𝑑𝐴𝑗  

($/Mwh) 
𝐼𝑛𝑑𝐵𝑗 ($) 

TEPE-CC-GAS 46.273 3251.673 URU-CC-GAS 46.273 3903.838 

TEFO-CC-GAS 46.273 2116.943 ARJ-GT-GAS 53.367 869.8109 

NOTE-CC-GNL 46.273 7552.667 ENE-ST-BIO 23.751 8.116 

SERGI-CC-GAS 46.273 9242.561 RIO-GAS 46.273 7552.667 

FACO-CC-CHP-

GAS 46.273 841.8966 PAM-COAL 23.751 689.86 

CELF-CC-CHP-

GAS 46.273 1134.73 LUI-CC-GAS 46.273 2353.65 

JESO-CC-CHP-GAS 46.273 1970.526 AUR-CC-GAS 46.273 1378.758 

CAMA-GT-GAS 53.367 7301.102 BAI-CC-GAS 46.273 3233.371 

TECE-GT-GAS 53.367 4635.62 BAR-GT-GAS 53.367 8124.978 

PROSPE-GAS 53.367 589.988 DOA-IC-IR 236.09 13024.2 

PECEM1-ST-COAL 23.751 1460.88 EUZ-CC-GAS 46.273 1524.565 

PECEM2-ST-COAL 23.751 730.44 FER-CC-GAS 46.273 3533.22 

PERN-IC-HFO 236.09 5342.58 LEO-CC-GAS 46.273 6456.371 

CAMA_MI-IC-HFO 236.09 4040.16 IGA-ST-OIL 236.09 3481.98 

CAMA_PI-IC-HFO 236.09 3987 IPA-ST-BIO 23.751 154.204 

SUAP-IC-HFO 236.09 10126.98 JUI-GT-GAS 53.367 1833.177 

TENE-IC-HFO 236.09 4545.18 LUI-GT-GAS 53.367 4298.484 

TEPA-IC-HFO 236.09 4545.18 MAR-GT-GAS 53.367 19440.1 

CAMP-IC-HFO 236.09 4492.02 NOR-CC-GAS 46.273 5300.898 

MARA-IC-HFO 236.09 4465.44 PIR-GT-GAS 53.367 4214.2 

TEMA-IC-LFO 236.09 3800.94 ROB-GT-GAS 53.367 632.13 

GLOB1-IC-HFO 236.09 3960.42 SAN-CC-GAS 46.273 5710.255 

GLOB2-IC-HFO 236.09 3960.42 VIA-IC-HFO 236.09 4640.868 

PETR-IC_HFO 236.09 3614.88 COC-ST-BIO 23.751 57.2178 

PAFE-IC_LFO 236.09 2498.52 BRA-IC-HFO 236.09 265.8 

TEPO3-IC-LFO 236.09 1754.28 DAI-IC-HFO 236.09 1180.152 

TEPO1-IC-LFO 236.09 1408.74 GOI-IC-HFO 236.09 3795.624 

TECA-IC-HFO 236.09 1329 MAR-CC-GAS 46.273 3228.49 

BAH-IC-HFO 236.09 850.56 PAL-IC-HFO 236.09 4667.448 

ENCE1-IC-LFO 236.09 305.67 XAV-IC-HFO 236.09 1426.017 

ENCE2-IC-LFO 236.09 305.67 APA-GT-GAS 53.367 5299.357 

ENCE3-IC-LFO 236.09 393.384 CRI-IC-GAS 53.367 1801.571 

ENCE4-IC-LFO 236.09 348.198 GERI-IC-HFO 236.09 4409.622 
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ENCE5-IC-LFO 236.09 393.384 GERII-IC-HFO 236.09 4409.622 

ENCE6-IC-LFO 236.09 393.384 JAR-IC-GAS 53.367 1590.861 

ENCE7-IC-LFO 236.09 393.384 MAN-IC-GAS 53.367 1801.571 

ENPI1-IC-LFO 236.09 348.198 

MARIII-CC-

GAS 46.273 3045.469 

ENPI2-IC-LFO 236.09 348.198 

MARIV-GT-

GAS 53.367 7113.57 

ENPI3-IC-LFO 236.09 348.198 MARV-GT-GAS 53.367 7113.57 

ENPI4-IC-LFO 236.09 348.198 

MAUB3-GT-

GAS 53.367 2528.52 

ENBA1-IC-LFO 236.09 2698.933 

MAUB4-GT-

GAS 53.367 3160.65 

ARA-CC-GAS 46.273 2953.349 MC2-GT-GAS 53.367 3712.71 

CAN-ST-COAL 23.751 710.15 MAU-CC-GAS 46.273 3556.708 

CHA-ST-COAL 23.751 36.522 PAR-GT-GAS 53.367 1179.976 

FIG-ST-COAL 23.751 20.29 PON-IC-GAS 53.367 1801.571 

LACA-ST-COAL 23.751 117.682 POR-ST-COAL 23.751 730.6429 

LACB-ST-COAL 23.751 265.799 SAN-GT-GAS 53.367 3752.745 

LACC-ST-COAL 23.751 736.527 SUZ-ST-BIO 23.751 517.0704 

KLA-ST-BIO 23.751 669.57 TAM-IC-GAS 53.367 1590.861 

NUT-IC-HFO 236.09 212.64 TER-CC-GAS 46.273 2134.94 

MED-ST-COAL 23.751 226.2335 SAN-ST-BIO 236.09 598.05 

JER-ST-COAL 23.751 13.52667 ACR-GAS 46.273 1000.515 

SET-CC-GAS 46.273 1516.634    
*own calculation based on [32]. 
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B. Technical and Economical parameters for hydropower 

plants with reservoir 

Table II-2. RES - Hydro Power Plant Technical Parameters*. 

Power Plant 
𝑃ℎ𝑑𝑀𝑎𝑥ℎ𝑑 

(MW) 

𝑀𝑎𝑥𝐿𝑒𝑣𝑒𝑙ℎ𝑑 

(hm³) 

𝑀𝑖𝑛𝐿𝑒𝑣𝑒𝑙ℎ𝑑 

(hm³) 

𝑄𝑚𝑎𝑥ℎ𝑑 

(m³/s) 

𝑄𝑚𝑖𝑛ℎ𝑑 

(m³/s) 
𝑡𝑣𝑖𝑎𝑔ℎ𝑑(ℎ) 

A. A. LAYDNER 

(Jurumirim) 97.7 7008 3843 355.1971 55 0 

ÁGUA VERMELHA 1396.2 11025 5856 2445.635 484 6 

AMADOR AGUIAR I 

(campim branco I) 240 241.13 228.27 491.2409 65 5 

BALBINA 250 19959 9735 1289.84 19 0 

BARRA BONITA 140 3135 569 733.3333 91 0 

BARRA GRANDE 698.2 4904.45 2711.79 513.7546 19 0 

BATALHA 53.6 1781.6 430 152.5862 16 0 

BOA ESPERANÇA 237.3 5085 3173 605.3073 173 0 

CACONDE 80.4 555 51 89.05817 8 0 

CACU 65 231.77 197.27 276.2712 54 0 

CAMARGOS 46 792 120 212.9534 34 0 

CAMPOS NOVOS 879.9 1477 1320 548.1806 17 1 

CAPIVARA (Escola 

Engenharia Mackenzie) 617.5 10540 4816 1654.645 192 3 

CHAVANTES 414 8795 5754 628.8493 186 4 

CORUMBÁ 375 1500 470 547.4178 74 16 

CORUMBA III 95.4 972 709 275 27 1 

CORUMBÁ IV 127 3624.4 2936.6 206.6884 22 0 

CURUA-UNA 30 530 130 184.0764 35 0 

EMBORCAÇÃO 1192 17725 4669 1010.145 73 1 

ESPORA 31.8 209 71 68.30467 22 0 

FUNIL 222 888 283 361.4943 51 81 

FURNAS 1312 22950 5733 1666.452 204 23 

GOV. BENTO 

MUNHOZ (Foz do Areia) 1676 5779 1974 1573.759 80 0 

GOV. NEY BRAGA (Ex 

UHE Segredo) 1260 2950 2562 1237.685 94 1 

GOV. PARIGOT 

SOUZA (Capivari-

Cachoeira) 260 179 23 38.50688 7 0 

I. SOLT. EQV 4251.5 34432 25467 11130.1 1552 9 

IRAPÉ 399 5964 2268 257.563 8 0 

ITAPARICA 1480 10782 7234 3248.705 501 1 

ITUMBIARA 2280 17027 4573 2812.851 261 5 

JAGUARI 27.6 1236 443 57.62712 7 0 

MACHADINHO 1140 3340 2283 1294.849 44 1 

MANSO 210 7337 4386 387.2 42 0 

MARIMBONDO 1488 6150 890 2799.58 418 10 

MASCARENHAS DE 478 4040 1540 1264.756 225 6 



117 

MORAES (Peixoto) 

MAUA 363.1 2137 1473 337.6923 27 1 

MIRANDA 408 1120 974 660.6557 64 6 

NOVA PONTE 510 12792 2412 526.3933 53 0 

PARAIBUNA 85 4732 2096 126.1628 21 0 

PASSO FUNDO 226 1589 185 98.50615 1 0 

PASSO REAL 158 3646 289 461.8902 12 0 

PEDRA DO CAVALO 160 3072 2192 174.026 1 0 

PEIXE ANGICAL 452 2741 2212.7 2066.949 185 1 

PICADA 50 7 6 43.66454 7 0 

PORTO ESTRELA 112 89 56 247.032 25 2 

PORTO PRIMAVERA 1540 20000 14400 8830.909 1881 24 

PROMISSAO 264 7408 5280 1257.416 149 6 

QUEBRA QUEIXO 121.5 137 111 113.7274 3 0 

QUEIMADO 105 557 95.25 66.77116 9 0 

RETIRO BAIXO 82 241.59 200.72 260.6452 24 0 

SALTO SANTIAGO 1420 6775 2662 1528.118 116 1 

SAMUEL 216.5 3493.44 943.23 824.4635 9 0 

SANTA BRANCA 56 439 131 130.9333 23 6 

SANTA CLARA - PR 120 431 169 160.3352 14 0 

SÃO ROQUE 135 795.67 336.72 305.0808 14 0 

SÃO SIMÃO 1710 12540 7000 2514.032 450 8 

SERRA DA MESA 1275 54400 11150 1158.052 97 0 

SERRA DO FACAO 212.6 5199 1752 304.8896 27 1 

SINOP 400 3071.2 1012.4 1790.95 267 0 

SOBRADINHO 1050 34116 5447 4151.337 506 1 

TRÊS MARIAS 396 19528 4250 914.7126 58 1 

TUCURUI 8370 50275 11293 13726.28 1269 1 

* data taken from [148], [127], [149] [150] 

Table II-3. Water Value for Hydro Power Plants with reservoir*. 

Res –Hydro Power 

plant 
𝐶𝑊𝑎𝑡𝑒𝑟ℎ𝑑,𝑤𝑒𝑒𝑘1 

($/hm3) 

𝐶𝑊𝑎𝑡𝑒𝑟ℎ𝑑,𝑤𝑒𝑒𝑘2 

 ($/hm3) 

𝐶𝑊𝑎𝑡𝑒𝑟ℎ𝑑,𝑤𝑒𝑒𝑘3 

 ($/hm3) 

𝐶𝑊𝑎𝑡𝑒𝑟ℎ𝑑,𝑤𝑒𝑒𝑘4 

 ($/hm3) 

A. A. LAYDNER 

(Jurumirim) 63255.32 57470.84 30578.46 28482.45 

ÁGUA 

VERMELHA 25929.96 23558.76 12534.89 11675.68 

AMADOR AGUIAR 

I (campim branco I) 58978.87 53585.46 28511.17 26556.86 

BALBINA 3056.801 2777.267 865.258 864.505 

BARRA BONITA 30985.26 28151.77 14978.69 13951.97 

BARRA GRANDE 48488.9 46411.2 30259.72 25979.88 

BATALHA 82143.19 74631.48 39709.11 36987.23 

BOA ESPERANÇA 2150.921 1548.833 1079.662 1656.636 

CACONDE 53226.51 48359.13 25730.4 23966.7 

CACU 40984.36 37236.48 19812.38 18454.34 
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CAMARGOS 155515.5 141294.1 75178.24 70025.13 

CAMPOS NOVOS 50645.71 48475.58 31605.68 27135.48 

CAPIVARA (Escola 

Engenharia 

Mackenzie) 33557.41 30488.7 16222.1 15110.15 

CHAVANTES 56059.29 50932.86 27099.8 25242.24 

CORUMBÁ 58489.76 53141.08 28274.73 26336.63 

CORUMBA III 64047.58 58190.65 30961.45 28839.19 

CORUMBÁ IV 74068.01 67294.74 35805.46 33351.16 

CURUA-UNA 2566.405 2331.716 726.446 725.814 

EMBORCAÇÃO 66090.9 60047.11 31949.22 29759.25 

ESPORA 24344.35 22118.14 11768.38 10961.71 

FUNIL 85183.3 77393.58 41178.74 38356.13 

FURNAS 144818.2 131575.1 70007.03 65208.37 

GOV. BENTO 

MUNHOZ (Foz do 

Areia) 79462.53 76057.63 49588.95 42575.25 

GOV. NEY BRAGA 

(Ex UHE Segredo) 66335.51 63493.1 41396.98 35541.92 

GOV. PARIGOT 

SOUZA (Capivari-

Cachoeira) 102673.1 98273.67 64073.63 55011.26 

I. SOLT. EQV 17691.31 16073.5 8552.215 7966 

IRAPÉ 24951.95 22670.18 12062.1 11235.3 

ITAPARICA 10753.64 7743.468 5397.825 8282.434 

ITUMBIARA 48044.33 43650.84 23225.27 21633.28 

JAGUARI 92898.86 84403.58 44908.54 41830.27 

MACHADINHO 27619.12 26435.67 17235.84 14798.06 

MANSO 8173.264 7425.847 3951.064 3680.237 

MARIMBONDO 33710.91 30628.16 16296.3 15179.27 

MASCARENHAS 

DE MORAES 

(Peixoto) 132100.6 120020.4 63859.17 59481.92 

MAUA 47990.82 45934.46 29948.89 25713.02 

MIRANDA 68950.25 62644.99 33331.47 31046.75 

NOVA PONTE 84495.8 76768.95 40846.39 38046.56 

PARAIBUNA 102559.7 93180.93 49578.7 46180.31 

PASSO FUNDO 48282.85 46213.98 30131.13 25869.48 

PASSO REAL 39925.29 38214.52 24915.56 21391.58 

PEDRA DO 

CAVALO 13652.09 9830.584 6852.714 10514.82 

PEIXE ANGICAL 22800.12 20715.12 6453.797 6448.183 

PICADA 96747.83 87900.57 46769.18 43563.37 

PORTO ESTRELA 22063.55 20045.91 10665.81 9934.72 

PORTO 

PRIMAVERA 8421.241 7651.148 4070.94 3791.896 

PROMISSAO 24181.83 21970.48 11689.82 10888.53 

QUEBRA QUEIXO 16276.88 15579.43 10157.66 8720.993 

QUEIMADO 40035.51 36374.4 19353.69 18027.09 
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RETIRO BAIXO 26140.96 23750.46 12636.89 11770.69 

SALTO SANTIAGO 50648.27 48478.03 31607.28 27136.85 

SAMUEL 3808.741 3460.445 1078.102 1077.164 

SANTA BRANCA 91313.25 82962.96 44142.03 41116.3 

SANTA CLARA - 

PR 70114.87 67110.51 43755.5 37566.87 

SÃO ROQUE 59534.95 56983.93 37153.06 31898.25 

SÃO SIMÃO 28757.91 26128.1 13901.96 12949.04 

SERRA DA MESA 46125.13 41907.15 22297.5 20769.11 

SERRA DO FACAO 76454.6 69463.09 36959.17 34425.79 

SINOP 64829.29 58900.88 31339.34 29191.17 

SOBRADINHO 13767.73 9913.857 6910.762 10603.89 

TRÊS MARIAS 21073.53 19146.43 10187.23 9488.938 

TUCURUI 8271.344 7514.958 2341.285 2339.248 

*own calculation based on PLD ($/MWh) [157] and productivity (𝑀𝑊 (𝑚3/𝑠)⁄ ) [127]. 
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C. Technical and economical parameters for run-of-river 

hydropower plants 

Table II-4. ROR - Hydro Power Plant Technical Parameters*  

Hydropower Plant 
𝑃𝑚𝑎𝑥𝑅𝑂𝑅ℎ𝑟 

(MM) 

𝑄𝑚𝑎𝑥𝑅𝑂𝑅ℎ𝑟  

(m3/s) 

Qmin 

(m3/s) 

𝑡𝑣𝑖𝑎𝑔ℎ𝑟  

(h) 

14 DE JULHO 100 340 8 1 

AIMORÉS 330 1296 205 1 

ÁLVARO DE SOUZA LIMA (Bariri) 144 771 103 1 

ALZIR DOS SANTOS ANTUNES (ex 

UHE Monjolinho) 
74 134 2 1 

AMADOR AGUIAR II (campim branco II) 210 537 68 1 

APERTADOS 139 624 72 1 

ARMANDO S. OLIVEIRA (Limoeiro) 32 178 12 3 

BAGUARI 140 872 163 24 

BAIXO IGUAÇU 350 2502 160 1 

BARRA DO BRAÚNA 39 192 19 0 

BARRA DOS COQUEIROS 90 278 56 1 

BELO MONTE 11000 13950 - 0 

BELO MONTE - Complemento 233.1 2466 380 0 

BEM QUERER 708.5 4953 185 0 

CACHOEIRA CALDEIRÃO 219 1641 25 0 

CACHOEIRA DOURADA 658 2513 273 4 

CANA BRAVA 450 1155 102 10 

CANOAS I 82.5 567 98 1 

CANOAS II 72 561 96 2 

CASTRO ALVES 129.9 159 3 0 

COARACY NUNES 78 399 25 1 

COLIDER 300 1581 292 1 

COMISSARIO 140 459 32 0 

COMP. P.AFONSO/MOXOTO 4279.6 4199 501 1 

COUTO MAGALHÃES 150 116 36 0 

DARDANELOS 261 306 27 0 

DONA FRANCISCA 125 376 21 1 

ERCILANDIA 87 681 86 1 

ESTREITO 1087.2 6280 585 144 

EUCLIDES DA CUNHA 108.8 148 12 12 

FERREIRA GOMES 252 1722 25 1 

FONTES NOVA 132 51 - 0 

FOZ DO CHAPECÓ 855.2 1888 79 1 

FOZ PIQUIRI 96 762 97 1 

FUNDAO 120 152 14 2 

FUNIL GRANDE 180 585 68 12 

GARIBALDI 174.9 480 17 1 
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GOV. JOSÉ RICHA (Ex Salto Caxias) 1240 2100 148 1 

GUAPORE 120 84 19 0 

GUILMAN AMORIM 140 136 21 0 

HENRY BORDEN 889 152 - 0 

IBITINGA 131.4 702 128 1 

IGARAPAVA 210 1480 229 5 

ILHA DOS POMBOS 187.1 724 166 1 

ITÁ 1450 1590 49 2 

ITAIPU 60 HZ 10800 9945 2839 46 

ITAOCARA 150 668 183 1 

ITAPEBI 450 660 24 60 

ITAPIRANGA 735 2915 128 1 

ITAUBA 500 620 15 1 

ITIQUIRA I 60.8 80 25 0 

ITIQUIRA II 95.2 78 25 1 

ITUTINGA 52 236 34 1 

JACUI 180 234 12 1 

JAGUARA 424 1076 227 3 

JATOBA 2338 16920 3356 1 

JAURU 117.9 127 55 0 

JIRAU 3750 26900 1386 1 

JLM GODOY PEREIRA (Ex Foz do Rio 

Claro) 
68.4 298 62 1 

JUPIA 1551.2 8344 1649 1 

L. E. MAGALHÃES (Ex UHE Lajeado) 902.5 3400 259 64 

LUCAS N. GARCEZ (Salto Grande) 73.7 580 96 2 

LUIZ CARLOS BARRETO (Estreito) 1104 2028 226 2 

MASCARENHAS 198 1216 221 1 

MONTE CLARO 130 372 8 1 

NILO PEÇANHA 380 144 - 0 

NOVA AVANHANDAVA 347.4 1431 153 6 

OURINHOS 44.1 486 74 1 

PARANHOS 62.6 236 8 0 

PASSO SÃO JOÃO 77 326 21 1 

PEREIRA PASSOS 99.9 318 - 1 

PIRAJU 80 362 56 1 

PONTE DE PEDRA 176.1 81 40 0 

PORTO COLÔMBIA 328 1988 245 6 

RISOLETA NEVES (Ex-Candonga) 140 318 43 0 

RONDON II 73.5 138 33 0 

ROSAL 55 32 3 0 

ROSANA 354 2468 227 4 

SÁ CARVALHO 78 83 23 4 

SALTO 116 260 85 0 

SALTO APIACÁS 45 204 3 0 
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SALTO GRANDE - MG 102 132 24 0 

SALTO OSORIO 1078 1784 119 1 

SALTO PILAO 191.8 110 10 0 

SALTO RIO VERDINHO 93 254 92 1 

SANTA CLARA - MG 60 132 5 0 

SANTO ANTONIO 3151.2 25736 1407 1 

SANTO ANTONIO JARI 369.9 1668 33 0 

SÃO DOMINGOS 48 162 87 0 

SÃO JOSE 51 288 20 0 

SAO LUIZ TAPAJOS 7740 26676 3475 1 

SÃO MANOEL 700 3805 316 1 

SÃO SALVADOR 243.2 1206 107 5 

SERRA QUEBRADA 1328 5232 406 1 

SIMPLICIO 305.7 309 - 56 

SOBRAGÍ 60 90 - 1 

TABAJARA 350 1551 - 1 

TAQUARUCU (Escola Politécnica) 525 2550 - 4 

TELEMACO BORBA 109 252 - 0 

TELES PIRES 1820 3860 - 1 

VOLTA GRANDE 380 1584 - 3 

XINGÓ 3162 2976 - 1 

** data taken from [148], [127], [149] [150] 
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D. Production function coefficients for hydropower plants 

Table II-5. Production function coefficients for hydropower plants with reservoir – Part 1*. 

Planes 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 

Coefficients 𝛾𝑄
ℎ𝑇,𝑝𝑙𝑛

 𝛾𝑉
ℎ𝑇,𝑝𝑙𝑛

 𝛾𝑜
ℎ𝑇,𝑝𝑙𝑛

 𝛾𝑆
ℎ𝑇,𝑝𝑙𝑛

 𝛾𝑄
ℎ𝑇,𝑝𝑙𝑛

 𝛾𝑉
ℎ𝑇,𝑝𝑙𝑛

 𝛾𝑜
ℎ𝑇,𝑝𝑙𝑛

 𝛾𝑆
ℎ𝑇,𝑝𝑙𝑛

 𝛾𝑄
ℎ𝑇,𝑝𝑙𝑛

 𝛾𝑉
ℎ𝑇,𝑝𝑙𝑛

 𝛾𝑜
ℎ𝑇,𝑝𝑙𝑛

 𝛾𝑆
ℎ𝑇,𝑝𝑙𝑛

 𝛾𝑄
ℎ𝑇,𝑝𝑙𝑛

 𝛾𝑉
ℎ𝑇,𝑝𝑙𝑛

 𝛾𝑜
ℎ𝑇,𝑝𝑙𝑛

 𝛾𝑆
ℎ𝑇,𝑝𝑙𝑛

 

A. A. LAYDNER 

(Jurumirim) -0.238 -0.008 -31.120 -0.005 -0.262 -0.004 -15.099 -0.005 -0.310 -0.001 -8.959 -0.003 -0.225 -0.009 -33.251 -0.006 

ÁGUA 

VERMELHA -0.431 -0.042 -244.530   -0.439 -0.036 -215.754   -0.514 -0.009 -93.254   -0.506 -0.011 -98.110   

AMADOR 

AGUIAR I 

(campim branco I) -0.487 -0.146 -32.604   -0.487 -0.142 -31.543   -0.494 -0.034 -7.445   -0.471 -0.258 -53.829   

BALBINA -0.175 -0.003 -30.610 -0.009 -0.181 -0.003 -24.155 -0.009 -0.220 0.000 -1.200 -0.006 -0.137 -0.007 -46.760 -0.014 

BARRA BONITA -0.095 -0.033 -18.557 -0.006 -0.118 -0.021 -14.110 -0.008 -0.195 -0.004 -11.406 -0.003 -0.177 -0.007 -11.066 -0.006 

BARRA 

GRANDE -1.203 -0.066 -180.239 -0.004 -1.302 -0.022 -60.652 -0.004 -1.471 -0.003 -12.089 -0.001 -1.073 -0.096 -225.157 -0.006 

BATALHA -0.254 -0.018 -7.448 -0.007 -0.315 -0.005 -3.128 -0.007 -0.381 -0.002 -2.746 -0.003 -0.232 -0.020 -6.558 -0.009 

BOA 

ESPERANÇA -0.329 -0.016 -48.467 -0.008 -0.379 -0.005 -23.838 -0.005 -0.371 -0.006 -25.290 -0.008 -0.277 -0.027 -64.937 -0.011 

CACONDE -0.601 -0.053 -2.440 -0.011 -0.672 -0.030 -1.847 -0.012 -0.837 -0.005 -1.891 -0.007 -0.818 -0.007 -1.818 -0.011 

CACU -0.228 -0.099 -19.096 -0.005 -0.229 -0.093 -17.913 -0.004 -0.228 -0.096 -18.614 -0.005 -0.247 -0.032 -6.956 -0.003 

CAMARGOS -0.105 -0.047 -5.649   -0.149 -0.024 -4.340   -0.213 -0.008 -4.567   -0.207 -0.008 -4.459   

CAMPOS NOVOS -1.599 -0.081 -106.651   -1.599 -0.080 -104.727   -1.643 -0.005 -6.829   -1.569 -0.157 -198.872   

CAPIVARA 

(Escola Engenharia 

Mackenzie) -0.294 -0.031 -149.119 -0.007 -0.328 -0.014 -71.355 -0.009 -0.399 -0.004 -38.218 -0.004 -0.334 -0.012 -65.583 -0.007 

CHAVANTES -0.595 -0.015 -85.331 -0.008 -0.673 -0.002 -16.630 -0.004 -0.659 -0.003 -23.285 -0.008 -0.528 -0.026 -125.145 -0.011 

CORUMBÁ -0.470 -0.129 -57.944 -0.010 -0.509 -0.093 -44.087 -0.011 -0.679 -0.020 -22.249 -0.007 -0.658 -0.025 -22.986 -0.010 

CORUMBA III -0.334 -0.024 -16.490 -0.007 -0.336 -0.020 -13.639 -0.007 -0.370 -0.004 -3.213 -0.004 -0.306 -0.050 -30.950 -0.009 

CORUMBÁ IV -0.589 -0.009 -26.338 -0.009 -0.593 -0.007 -20.564 -0.009 -0.640 -0.001 -5.107 -0.005 -0.548 -0.019 -50.376 -0.013 
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CURUA-UNA -0.122 -0.023 -2.505 -0.008 -0.133 -0.015 -1.826 -0.008 -0.182 -0.006 -2.346 -0.005 -0.092 -0.034 -0.678 -0.011 

EMBORCAÇÃO -0.802 -0.036 -166.501   -0.897 -0.022 -109.947   -1.188 -0.003 -40.031   -1.150 -0.004 -43.613   

ESPORA -0.358 -0.040 -2.454 -0.004 -0.391 -0.018 -1.606 -0.004 -0.403 -0.014 -1.586 -0.004 -0.297 -0.060 -1.145 -0.005 

FUNIL -0.389 -0.122 -33.630 -0.008 -0.419 -0.091 -26.408 -0.009 -0.562 -0.019 -13.368 -0.005 -0.557 -0.020 -13.481 -0.008 

FURNAS -0.654 -0.017 -97.534 -0.005 -0.707 -0.008 -57.148 -0.006 -0.800 -0.002 -41.262 -0.002 -0.757 -0.004 -42.957 -0.005 

GOV. BENTO 

MUNHOZ (Foz do 

Areia) -0.862 -0.099 -194.364 -0.009 -0.946 -0.066 -135.960 -0.009 -1.233 -0.010 -47.717 -0.005 -0.355 -0.220 -13.266 -0.029 

GOV. NEY 

BRAGA (Ex UHE 

Segredo) -0.996 -0.133 -341.378 -0.005 -1.008 -0.061 -156.065 -0.005 -1.042 -0.011 -33.495 -0.002 -0.990 -0.151 -382.436 -0.009 

GOV. PARIGOT 

SOUZA (Capivari-

Cachoeira) -6.398 -0.068 -1.553   -6.484 -0.033 -1.357   -6.586 -0.012 -1.597   -6.398 -0.068 -1.553   

I. SOLT. EQV -0.361 -0.040 -993.938 -0.008 -0.366 -0.028 -718.038 -0.008 -0.404 -0.008 -256.768 -0.004 -0.344 -0.057 -1339.63 -0.010 

IRAPÉ -1.227 -0.027 -61.998 -0.012 -1.304 -0.017 -38.903 -0.014 -1.576 -0.001 -4.702 -0.005 -1.507 -0.003 -9.404 -0.012 

ITAPARICA -0.413 -0.044 -318.289   -0.417 -0.038 -276.721 0.000 -0.457 -0.007 -72.046 0.000 -0.384 -0.066 -425.191   

ITUMBIARA -0.515 -0.054 -243.185 -0.014 -0.551 -0.040 -185.062 -0.018 -0.725 -0.006 -75.844 -0.007 -0.707 -0.008 -79.533 -0.014 

JAGUARI -0.374 -0.013 -5.760   -0.440 -0.005 -2.488   -0.535 -0.002 -1.809   -0.355 -0.014 -5.683   

MACHADINHO -0.802 -0.151 -344.478 -0.010 -0.839 -0.063 -144.590 -0.010 -0.935 -0.006 -18.915 -0.004 -0.728 -0.238 -493.992 -0.015 

MANSO -0.451 -0.010 -42.624 -0.007 -0.452 -0.010 -41.470 -0.009 -0.528 -0.001 -8.389 -0.003 -0.517 -0.002 -10.756 -0.007 

MARIMBONDO -0.350 -0.104 -84.486 -0.015 -0.391 -0.067 -68.696 -0.019 -0.504 -0.018 -72.211 -0.008 -0.495 -0.020 -70.264 -0.015 

MASCARENHAS 

DE MORAES 

(Peixoto) -0.267 -0.054 -81.541 -0.008 -0.273 -0.049 -75.182 -0.010 -0.369 -0.011 -37.666 -0.005 -0.361 -0.013 -38.442 -0.008 

MAUA -0.997 -0.035 -51.589 -0.008 -1.016 -0.017 -25.913 -0.008 -1.076 -0.003 -6.880 -0.004 -0.940 -0.062 -80.574 -0.011 

MIRANDA -0.603 -0.099 -95.836   -0.608 -0.058 -56.089   -0.630 -0.012 -13.373   -0.596 -0.127 -120.643   

NOVA PONTE -0.715 -0.023 -53.070 -0.012 -0.896 -0.006 -22.884 -0.012 -1.057 -0.002 -22.562 -0.006 -0.656 -0.025 -42.370 -0.016 

PARAIBUNA -0.577 -0.009 -18.320   -0.647 -0.003 -8.185   -0.737 -0.002 -6.300   -0.465 -0.013 -19.453   

PASSO FUNDO -2.199 -0.010 -1.904   -2.256 -0.002 -0.506   -2.323 0.000 -0.141   -2.193 -0.011 -1.669   

PASSO REAL -0.185 -0.043 -12.318   -0.313 -0.009 -3.997   -0.429 -0.001 -3.136   -0.125 -0.051 -0.380   
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PEDRA DO 

CAVALO -0.878 -0.014 -29.966 -0.003 -0.901 -0.005 -10.562 -0.003 -0.949 0.000 -0.255 -0.001 -0.871 -0.015 -32.249 -0.004 

PEIXE ANGICAL -0.234 -0.040 -84.794 -0.008 -0.235 -0.038 -80.596 -0.008 -0.252 -0.007 -14.612 -0.005 -0.207 -0.087 -158.593 -0.014 

PICADA -1.093 -0.255 -1.502 -0.003 -1.101 -0.060 -0.391 -0.002 -1.095 -0.161 -0.955 -0.003 -1.081 -0.565 -3.066 -0.005 

PORTO 

ESTRELA -0.374 -0.587 -32.849 0.000 -0.456 -0.062 -5.475 0.000 -0.449 -0.083 -6.507   -0.347 -0.711 -36.141   

PORTO 

PRIMAVERA -0.162 -0.019 -229.292   -0.165 -0.015 -178.060   -0.179 -0.007 -80.168   -0.133 -0.037 -331.670   

PROMISSAO -0.185 -0.020 -105.506 -0.004 -0.195 -0.010 -54.405 -0.004 -0.223 -0.003 -19.824 -0.002 -0.180 -0.023 -116.997 -0.006 

QUEBRA 

QUEIXO -1.037 -0.192 -21.252 -0.002 -1.051 -0.074 -8.218 -0.002 -1.083 -0.006 -0.748 -0.001 -1.010 -0.308 -32.535 -0.002 

QUEIMADO -1.487 -0.030 -2.743   -1.576 -0.008 -1.436   -1.630 -0.004 -1.601   -1.479 -0.031 -2.512   

RETIRO BAIXO -0.305 -0.076 -14.960 -0.006 -0.322 -0.011 -2.504 -0.003 -0.310 -0.046 -9.248 -0.006 -0.287 -0.148 -26.986 -0.010 

SALTO 

SANTIAGO -0.762 -0.088 -231.949 -0.013 -0.798 -0.063 -169.775 -0.016 -0.988 -0.007 -43.846 -0.006 -0.933 -0.017 -62.506 -0.013 

SAMUEL -0.211 -0.014 -13.233 -0.016 -0.233 -0.007 -6.846 -0.016 -0.278 0.000 -0.526 -0.009 -0.141 -0.033 -1.725 -0.027 

SANTA BRANCA -0.223 -0.077 -10.135   -0.262 -0.051 -7.497   -0.366 -0.014 -5.107   -0.133 -0.109 -7.339   

SANTA CLARA - 

PR -0.646 -0.106 -17.837 -0.003 -0.711 -0.033 -6.496 -0.003 -0.796 -0.010 -3.668 -0.001 -0.554 -0.157 -18.501 -0.005 

SÃO ROQUE -0.350 -0.092 -30.875 -0.003 -0.398 -0.031 -10.887 -0.003 -0.473 -0.005 -3.190 -0.001 -0.405 -0.026 -9.508 -0.003 

SÃO SIMÃO -0.586 -0.043 -294.613   -0.590 -0.040 -276.546   -0.677 -0.008 -96.499   -0.670 -0.010 -102.712   

SERRA DA 

MESA -0.750 -0.013 -147.626 -0.008 -0.912 -0.005 -74.907 -0.010 -1.116 -0.001 -47.688 -0.003 -1.051 -0.002 -50.276 -0.008 

SERRA DO 

FACAO -0.491 -0.022 -39.178 -0.013 -0.540 -0.015 -26.630 -0.023 -0.695 -0.002 -8.971 -0.007 -0.358 -0.033 -35.902 -0.040 

SINOP -0.163 -0.083 -80.937 -0.009 -0.197 -0.033 -39.467 -0.009 -0.247 -0.014 -34.086 -0.005 -0.123 -0.112 -69.751 -0.012 

SOBRADINHO -0.145 -0.018 -84.685 -0.010 -0.173 -0.011 -59.922 -0.012 -0.245 -0.003 -50.767 -0.006 -0.233 -0.003 -48.814 -0.010 

TRÊS MARIAS -0.281 -0.014 -60.200 -0.004 -0.372 -0.004 -22.195 -0.006 -0.478 -0.001 -15.091 -0.002 -0.377 -0.004 -21.268 -0.004 

TUCURUI -0.391 -0.080 -855.548 -0.018 -0.437 -0.051 -582.278 -0.021 -0.583 -0.009 -293.664 -0.010 -0.553 -0.014 -309.773 -0.018 

*own calculation based on [127], [150] 

** units = 𝛾𝑄
ℎ𝑇,𝑝𝑙𝑛

: (MW·s/m³); 𝛾𝑉
ℎ𝑇,𝑝𝑙𝑛

: (MW/hm³); 𝛾𝑜
ℎ𝑇,𝑝𝑙𝑛

: (MW); 𝛾𝑆
ℎ𝑇,𝑝𝑙𝑛

: (MW·s/m³). 
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Table II-6. Production function coefficients for hydropower plants with reservoir – Part 2*. 

Planes 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 

Coefficients 𝛾𝑄
ℎ𝑇,𝑝𝑙𝑛

 𝛾𝑉
ℎ𝑇,𝑝𝑙𝑛

 𝛾𝑜
ℎ𝑇,𝑝𝑙𝑛

 𝛾𝑆
ℎ𝑇,𝑝𝑙𝑛

 𝛾𝑄
ℎ𝑇,𝑝𝑙𝑛

 𝛾𝑉
ℎ𝑇,𝑝𝑙𝑛

 𝛾𝑜
ℎ𝑇,𝑝𝑙𝑛

 𝛾𝑆
ℎ𝑇,𝑝𝑙𝑛

 𝛾𝑄
ℎ𝑇,𝑝𝑙𝑛

 𝛾𝑉
ℎ𝑇,𝑝𝑙𝑛

 𝛾𝑜
ℎ𝑇,𝑝𝑙𝑛

 𝛾𝑆
ℎ𝑇,𝑝𝑙𝑛

 𝛾𝑄
ℎ𝑇,𝑝𝑙𝑛

 𝛾𝑉
ℎ𝑇,𝑝𝑙𝑛

 𝛾𝑜
ℎ𝑇,𝑝𝑙𝑛

 𝛾𝑆
ℎ𝑇,𝑝𝑙𝑛

 

A. A. LAYDNER 

(Jurumirim) -0.312 -0.001 -7.922 -0.003 -0.243 -0.002 1.028 -0.006 -0.243 -0.002 1.028 -0.006 -0.243 -0.002 1.028 -0.006 

ÁGUA VERMELHA -0.418 -0.047 -254.559   -0.520 -0.007 -78.310   -0.520 -0.007 -78.310   -0.520 -0.007 -78.310   

AMADOR AGUIAR 

I (campim branco I) -0.472 -0.250 -52.010   -0.478 -0.146 -30.052   -0.494 -0.033 -7.190   -0.478 -0.142 -28.992   

BALBINA -0.171 -0.003 -28.079 -0.014 -0.220 0.000 -0.911 -0.006 -0.171 -0.003 -24.136 -0.014 -0.175 -0.003 -20.218 -0.014 

BARRA BONITA -0.064 -0.041 -10.192 -0.009 -0.200 -0.003 -9.292 -0.003 -0.200 -0.003 -9.292 -0.003 -0.200 -0.003 -9.292 -0.003 

BARRA GRANDE -1.474 -0.002 -10.172 -0.001 -1.206 0.000 71.440 -0.006 -1.206 0.000 71.440 -0.006 -1.206 0.000 71.440 -0.006 

BATALHA -0.389 -0.001 -2.000 -0.003 -0.294 -0.003 2.225 -0.009 -0.294 -0.003 2.225 -0.009 -0.294 -0.003 2.225 -0.009 

BOA ESPERANÇA -0.327 -0.016 -48.431 -0.011 -0.383 -0.004 -20.965 -0.005 -0.383 -0.004 -20.965 -0.005 -0.383 -0.004 -20.965 -0.005 

CACONDE -0.406 -0.084 5.432 -0.011 -0.854 -0.003 -1.188 -0.007 -0.854 -0.003 -1.188 -0.007 -0.854 -0.003 -1.188 -0.007 

CACU -0.218 -0.163 -30.151 -0.007 -0.248 -0.030 -6.622 -0.003 -0.228 -0.093 -17.818 -0.006 -0.215 -0.010 3.431 -0.007 

CAMARGOS -0.080 -0.054 -3.351   -0.224 -0.005 -3.586   -0.224 -0.005 -3.586   -0.224 -0.005 -3.586   

CAMPOS NOVOS -1.592 -0.081 -104.656   -1.643 -0.005 -6.707   -1.592 -0.080 -102.61   -1.570 -0.005 13.171   

CAPIVARA (Escola 

Engenharia 

Mackenzie) -0.217 -0.051 -172.725 -0.010 -0.403 -0.003 -31.143 -0.004 -0.403 -0.003 -31.143 -0.004 -0.403 -0.003 -31.143 -0.004 

CHAVANTES -0.581 -0.016 -87.806 -0.011 -0.675 -0.002 -14.643 -0.004 -0.675 -0.002 -14.643 -0.004 -0.675 -0.002 -14.643 -0.004 

CORUMBÁ -0.305 -0.205 -42.276 -0.011 -0.695 -0.013 -16.347 -0.007 -0.695 -0.013 -16.347 -0.007 -0.695 -0.013 -16.347 -0.007 

CORUMBA III -0.370 -0.004 -3.089 -0.004 -0.324 -0.009 -0.863 -0.009 -0.324 -0.009 -0.863 -0.009 -0.324 -0.009 -0.863 -0.009 

CORUMBÁ IV -0.640 -0.001 -5.083 -0.005 -0.576 -0.003 -3.272 -0.013 -0.576 -0.003 -3.272 -0.013 -0.576 -0.003 -3.272 -0.013 

CURUA-UNA -0.183 -0.005 -2.243 -0.005 -0.128 -0.013 -0.298 -0.011 -0.128 -0.013 -0.298 -0.011 -0.128 -0.013 -0.298 -0.011 

EMBORCAÇÃO -0.544 -0.054 -113.160   -1.204 -0.002 -28.327   -1.204 -0.002 -28.327   -1.204 -0.002 -28.327   

ESPORA -0.420 -0.006 -0.814 -0.003 -0.410 -0.009 -1.055 -0.004 -0.410 -0.009 -1.055 -0.004 -0.410 -0.009 -1.055 -0.004 

FUNIL -0.260 -0.188 -25.762 -0.010 -0.574 -0.012 -10.219 -0.005 -0.574 -0.012 -10.219 -0.005 -0.574 -0.012 -10.219 -0.005 

FURNAS -0.543 -0.027 -47.656 -0.007 -0.810 -0.001 -31.237 -0.002 -0.810 -0.001 -31.237 -0.002 -0.810 -0.001 -31.237 -0.002 
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GOV. BENTO 

MUNHOZ (Foz do 

Areia) -0.540 -0.147 -22.850 -0.032 -0.785 -0.099 -130.786 -0.018 -1.241 -0.006 -35.994 -0.005 -0.869 -0.066 -72.382 -0.018 

GOV. NEY BRAGA 

(Ex UHE Segredo) -1.042 -0.011 -31.609 -0.002 -0.993 -0.015 -10.975 -0.009 -0.993 -0.015 -10.975 -0.009 -0.993 -0.015 -10.975 -0.009 

GOV. PARIGOT 

SOUZA (Capivari-

Cachoeira) -6.602 -0.006 -1.070   -6.602 -0.006 -1.070   -6.602 -0.006 -1.070   -6.602 -0.006 -1.070   

I. SOLT. EQV -0.405 -0.007 -237.031 -0.004 -0.349 -0.010 43.524 -0.010 -0.349 -0.010 43.524 -0.010 -0.349 -0.010 43.524 -0.010 

IRAPÉ -1.000 -0.043 -66.624 -0.015 -1.581 -0.001 -3.466 -0.005 -1.581 -0.001 -3.466 -0.005 -1.581 -0.001 -3.466 -0.005 

ITAPARICA -0.458 -0.006 -61.795 0.000 -0.458 -0.006 -61.795   -0.458 -0.006 -61.795   -0.458 -0.006 -61.795   

ITUMBIARA -0.355 -0.087 -147.280 -0.021 -0.736 -0.004 -54.738 -0.007 -0.736 -0.004 -54.738 -0.007 -0.736 -0.004 -54.738 -0.007 

JAGUARI -0.543 -0.001 -1.429   -0.379 -0.001 4.284   -0.379 -0.001 4.284   -0.379 -0.001 4.284   

MACHADINHO -0.936 -0.005 -16.982 -0.004 -0.818 -0.038 -48.277 -0.015 -0.818 -0.038 -48.277 -0.015 -0.818 -0.038 -48.277 -0.015 

MANSO -0.390 -0.017 -60.728 -0.011 -0.530 -0.001 -7.056 -0.003 -0.530 -0.001 -7.056 -0.003 -0.530 -0.001 -7.056 -0.003 

MARIMBONDO -0.215 -0.165 78.671 -0.022 -0.522 -0.010 -51.470 -0.008 -0.522 -0.010 -51.470 -0.008 -0.522 -0.010 -51.470 -0.008 

MASCARENHAS 

DE MORAES 

(Peixoto) -0.187 -0.088 -73.176 -0.012 -0.375 -0.009 -32.131 -0.005 -0.375 -0.009 -32.131 -0.005 -0.375 -0.009 -32.131 -0.005 

MAUA -1.077 -0.003 -6.133 -0.004 -0.995 -0.007 -0.607 -0.011 -0.995 -0.007 -0.607 -0.011 -0.995 -0.007 -0.607 -0.011 

MIRANDA -0.631 -0.012 -12.776   -0.603 -0.036 -29.391   -0.603 -0.036 -29.391   -0.603 -0.036 -29.391   

NOVA PONTE -1.080 -0.001 -15.850 -0.006 -0.828 -0.003 36.835 -0.016 -0.828 -0.003 36.835 -0.016 -0.828 -0.003 36.835 -0.016 

PARAIBUNA -0.747 -0.001 -5.188   -0.600 -0.001 4.011   -0.600 -0.001 4.011   -0.600 -0.001 4.011   

PASSO FUNDO -2.323 0.000 -0.105   -2.241 -0.001 1.754   -2.241 -0.001 1.754   -2.241 -0.001 1.754   

PASSO REAL -0.434 -0.001 -2.023   -0.245 0.000 44.675   -0.245 0.000 44.675   -0.245 0.000 44.675   

PEDRA DO 

CAVALO -0.949 0.000 -0.225 -0.001 -0.880 -0.001 3.615 -0.004 -0.880 -0.001 3.615 -0.004 -0.880 -0.001 3.615 -0.004 

PEIXE ANGICAL -0.215 -0.056 -99.666 -0.014 -0.224 -0.040 -74.009 -0.012 -0.252 -0.006 -13.838 -0.005 -0.225 -0.038 -69.811 -0.012 

PICADA -1.086 -0.373 -2.048 -0.005 -1.101 -0.054 -0.353 -0.002 -1.101 -0.054 -0.353 -0.002 -1.101 -0.054 -0.353 -0.002 

PORTO ESTRELA -0.357 -0.644 -33.741 0.000 -0.456 -0.062 -5.475 0.000 -0.456 -0.062 -5.475 0.000 -0.456 -0.062 -5.475 0.000 

PORTO 

PRIMAVERA -0.147 -0.021 -166.441   -0.149 -0.019 -159.200   -0.180 -0.005 -58.266   -0.152 -0.015 -107.968   
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PROMISSAO -0.223 -0.003 -19.114 -0.002 -0.192 -0.009 -42.916 -0.006 -0.192 -0.009 -42.916 -0.006 -0.192 -0.009 -42.916 -0.006 

QUEBRA QUEIXO -1.083 -0.005 -0.676 -0.001 -1.045 -0.049 -4.425 -0.002 -1.045 -0.049 -4.425 -0.002 -1.045 -0.049 -4.425 -0.002 

QUEIMADO -1.646 -0.002 -1.073   -1.538 -0.003 2.648   -1.538 -0.003 2.648   -1.538 -0.003 2.648   

RETIRO BAIXO -0.294 -0.105 -19.449 -0.010 -0.322 -0.009 -2.018 -0.003 -0.322 -0.009 -2.018 -0.003 -0.322 -0.009 -2.018 -0.003 

SALTO SANTIAGO -0.613 -0.139 -245.615 -0.020 -0.992 -0.006 -36.645 -0.006 -0.992 -0.006 -36.645 -0.006 -0.992 -0.006 -36.645 -0.006 

SAMUEL -0.199 -0.015 -8.454 -0.027 -0.201 -0.014 -8.947 -0.024 -0.278 0.000 -0.196 -0.009 -0.223 -0.007 -2.560 -0.024 

SANTA BRANCA -0.374 -0.009 -3.747   -0.374 -0.009 -3.747   -0.374 -0.009 -3.747   -0.374 -0.009 -3.747   

SANTA CLARA - 

PR -0.801 -0.007 -2.965 -0.001 -0.694 -0.024 -1.109 -0.005 -0.694 -0.024 -1.109 -0.005 -0.694 -0.024 -1.109 -0.005 

SÃO ROQUE -0.273 -0.141 -35.036 -0.004 -0.475 -0.003 -2.426 -0.001 -0.475 -0.003 -2.426 -0.001 -0.475 -0.003 -2.426 -0.001 

SÃO SIMÃO -0.575 -0.046 -306.452   -0.681 -0.007 -86.166   -0.681 -0.007 -86.166   -0.681 -0.007 -86.166   

SERRA DA MESA -0.505 -0.019 -60.935 -0.012 -1.140 -0.001 -31.109 -0.003 -1.140 -0.001 -31.109 -0.003 -1.140 -0.001 -31.109 -0.003 

SERRA DO FACAO -0.704 -0.001 -6.434 -0.004 -0.695 -0.002 -8.896 -0.013 -0.695 -0.002 -8.896 -0.013 -0.695 -0.002 -8.896 -0.013 

SINOP -0.254 -0.009 -25.200 -0.005 -0.179 -0.019 20.508 -0.012 -0.179 -0.019 20.508 -0.012 -0.179 -0.019 20.508 -0.012 

SOBRADINHO -0.098 -0.024 -7.379 -0.014 -0.255 -0.001 -31.555 -0.006 -0.255 -0.001 -31.555 -0.006 -0.255 -0.001 -31.555 -0.006 

TRÊS MARIAS -0.017 

-

46.886 -0.006 -0.484 -0.001 

-

11.271 -0.002 -0.484 -0.001 

-

11.271 -0.002 -0.484 -0.001 -11.271 -0.002   

TUCURUI -0.132 

-

219.47 -0.024 -0.597 -0.005 

-

180.65 -0.010 -0.597 -0.005 

-

180.65 -0.010 -0.597 -0.005 -180.65 -0.010   

*own calculation based on [127], [150] 

** units = 𝛾𝑄
ℎ𝑇,𝑝𝑙𝑛

: (MW·s/m³); 𝛾𝑉
ℎ𝑇,𝑝𝑙𝑛

: (MW/hm³); 𝛾𝑜
ℎ𝑇,𝑝𝑙𝑛

: (MW); 𝛾𝑆
ℎ𝑇,𝑝𝑙𝑛

: (MW·s/m³). 
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Table II-7. Production function coefficients for ROR hydropower plants*. 

Planes 1 1 1 2 2 2 3 3 3 4 4 4 

Coefficients 𝛾𝑄
ℎ𝑇,𝑝𝑙𝑛𝑅

 𝛾𝑜
ℎ𝑇,𝑝𝑙𝑛𝑅

 𝛾𝑆
ℎ𝑇,𝑝𝑙𝑛𝑅

 𝛾𝑄
ℎ𝑇,𝑝𝑙𝑛𝑅

 𝛾𝑜
ℎ𝑇,𝑝𝑙𝑛𝑅

 𝛾𝑆
ℎ𝑇,𝑝𝑙𝑛𝑅

 𝛾𝑄
ℎ𝑇,𝑝𝑙𝑛𝑅

 𝛾𝑜
ℎ𝑇,𝑝𝑙𝑛𝑅

 𝛾𝑆
ℎ𝑇,𝑝𝑙𝑛𝑅

 𝛾𝑄
ℎ𝑇,𝑝𝑙𝑛𝑅

 𝛾𝑜
ℎ𝑇,𝑝𝑙𝑛𝑅

 𝛾𝑆
ℎ𝑇,𝑝𝑙𝑛𝑅

 

14 DE JULHO 0.3162 0.0092   0.1148 61.0118   0.1148 61.0118   0.1148 61.0118   

AIMORÉS 0.2607 1.4427   0.2340 17.3301   0.2025 56.1565   0.2025 56.1565   

ÁLVARO DE SOUZA LIMA (Bariri) 0.1882 0.0985 -0.0073 0.1555 19.5417 -0.0105 0.1555 19.5417 -0.0105 0.1555 19.5417 -0.0105 

ALZIR DOS SANTOS ANTUNES (ex UHE 

Monjolinho) 0.5459 0.0004 -0.0026 0.4717 9.1122 -0.0043 0.4717 9.1122 -0.0043 0.4717 9.1122 -0.0043 

AMADOR AGUIAR II (campim branco II) 0.3976 0.2308 -0.0053 0.3976 0.2308 -0.0053 0.3976 0.2308 -0.0053 0.3976 0.2308 -0.0053 

APERTADOS 0.2441 0.2201 -0.0054 0.2441 0.2201 -0.0054 0.2441 0.2201 -0.0054 0.2441 0.2201 -0.0054 

ARMANDO S. OLIVEIRA (Limoeiro) 0.2142 0.0227 -0.0080 0.0845 18.2642 -0.0050 -0.0001 31.8448 0.0000 -0.0001 31.8448 0.0000 

BAGUARI 0.1729 0.5979 -0.0066 0.1549 8.7154 -0.0111 0.0617 86.2728 -0.0100 0.0617 86.2728 -0.0100 

BAIXO IGUAÇU 0.1582 0.6596   0.1417 10.0088   0.1271 32.1931   0.0914 117.8123   

BARRA DO BRAÚNA 0.2142 0.0584   0.1665 6.9795   0.1665 6.9795   0.1665 6.9795   

BARRA DOS COQUEIROS 0.3318 0.1780 -0.0056 0.2961 8.3039 -0.0059 0.2961 8.3039 -0.0059 0.2961 8.3039 -0.0059 

BELO MONTE 0.8371 3.9125 -0.0185 0.5957 

2892.880

7 -0.0204 0.5957 

2892.880

7 -0.0204 0.5957 

2892.880

7 -0.0204 

BELO MONTE - Complemento 0.0935 0.8402 -0.0037 0.0841 10.6457 -0.0074 0.0169 159.4266 -0.0085 0.0169 159.4266 -0.0085 

BEM QUERER 0.1782 1.2428   0.1382 45.4965   0.1087 138.9538   0.1087 138.9538   

CACHOEIRA CALDEIRÃO 0.1409 0.0028 -0.0048 0.1109 41.0046 -0.0057 0.1109 41.0046 -0.0057 0.1109 41.0046 -0.0057 

CACHOEIRA DOURADA 0.2704 1.8326 -0.0090 0.2418 25.4472 -0.0207 0.1661 196.5295 -0.0263 0.1661 196.5295 -0.0263 

CANA BRAVA 0.3999 0.6052   0.3591 18.5628   0.1962 195.0842   0.1962 195.0842   

CANOAS I 0.1483 0.1477 -0.0055 0.1248 10.6393 -0.0083 0.1248 10.6393 -0.0083 0.1248 10.6393 -0.0083 

CANOAS II 0.1268 0.1409 -0.0058 0.0918 16.6703 -0.0081 0.0918 16.6703 -0.0081 0.0918 16.6703 -0.0081 

CASTRO ALVES 0.8509 0.0063   0.7464 12.6461   0.7464 12.6461   0.7464 12.6461   

COARACY NUNES 0.1825 0.0025   0.0903 33.2257   0.0903 33.2257   0.0903 33.2257   

COLIDER 0.2133 2.9063 -0.0104 0.1913 15.0990 -0.0177 0.1715 36.0629 -0.0241 0.1715 36.0629 -0.0241 

COMISSARIO 0.3185 0.0545 -0.0048 0.3185 0.0545 -0.0048 0.3185 0.0545 -0.0048 0.3185 0.0545 -0.0048 
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COUTO MAGALHÃES 1.3606 0.5148   1.3606 0.5148   1.3606 0.5148   1.3606 0.5148   

DARDANELOS 0.8815 0.0350 -0.0106 0.4257 130.5842 -0.0003 0.4257 130.5842 -0.0003 0.4257 130.5842 -0.0003 

DONA FRANCISCA 0.3386 0.0336 -0.0075 0.2739 19.5277 -0.0130 0.2739 19.5277 -0.0130 0.2739 19.5277 -0.0130 

ERCILANDIA 0.1538 0.4034 -0.0055 0.1372 4.0712 -0.0102 0.1225 11.3794 -0.0122 0.1225 11.3794 -0.0122 

ESTREITO 0.2312 9.3786 -0.0147 0.1794 90.9799 -0.0255 0.1397 229.4882 -0.0384 0.1397 229.4882 -0.0384 

EUCLIDES DA CUNHA 0.7376 0.0941 -0.0150 0.4040 42.7751 -0.0228 0.4040 42.7751 -0.0228 0.4040 42.7751 -0.0228 

FERREIRA GOMES 0.1687 0.0317   0.1504 9.7797   0.1344 32.6353   0.0001 251.9163   

FONTES NOVA 2.6809     2.6809     2.6809     2.6809     

FOZ DO CHAPECÓ 0.4660 0.1885   0.3675 145.0002   0.3675 145.0002   0.3675 145.0002   

FOZ PIQUIRI 0.1487 0.3845 -0.0050 0.1333 4.4245 -0.0108 0.1333 4.4245 -0.0108 0.1333 4.4245 -0.0108 

FUNDAO 0.8353 0.0252 -0.0085 0.0000 120.0447 0.0000 0.0000 120.0447 0.0000 0.0000 120.0447 0.0000 

FUNIL GRANDE 0.3511 0.0000 0.0000 0.1295 111.5274 0.0000   180.2573 0.0000   180.2573 0.0000 

GARIBALDI 0.3922 0.0097 -0.0057 0.2334 71.5505 -0.0016 0.2334 71.5505 -0.0016 0.2334 71.5505 -0.0016 

GOV. JOSÉ RICHA (Ex Salto Caxias) 0.5867 0.2057 -0.0087 0.4426 271.1875 -0.0141 0.4426 271.1875 -0.0141 0.4426 271.1875 -0.0141 

GUAPORE 1.4094 0.2065 -0.0065 1.4094 0.2065 -0.0065 1.4094 0.2065 -0.0065 1.4094 0.2065 -0.0065 

GUILMAN AMORIM 1.0262     1.0262     1.0262     1.0262     

HENRY BORDEN 5.6951     5.6951     5.6951     5.6951     

IBITINGA 0.2043 0.4106 -0.0089 0.1438 34.4123 -0.0089 0.0001 131.3587 -0.0051 0.0001 131.3587 -0.0051 

IGARAPAVA 0.1494 0.4427 -0.0032 0.0851 84.2288 -0.0014 0.0851 84.2288 -0.0014 0.0851 84.2288 -0.0014 

ILHA DOS POMBOS 0.2805 2.1067   0.1957 51.0009   0.0001 187.0848   0.0001 187.0848   

ITÁ 0.9298 0.1311 -0.0164 0.8201 129.2093 -0.0305 0.8201 129.2093 -0.0305 0.8201 129.2093 -0.0305 

ITAIPU 60 HZ 0.8094 86.9803 -0.0367 0.7260 565.7137 -0.0787 0.2940 

5946.761

9 -0.0992 0.2940 

5946.761

9 -0.0992 

ITAOCARA 0.3191 0.8278 -0.0030 0.3191 0.8278 -0.0030 0.3191 0.8278 -0.0030 0.3191 0.8278 -0.0030 

ITAPEBI 0.7279 0.0642 -0.0093 0.5147 122.1234 -0.0052 0.5147 122.1234 -0.0052 0.5147 122.1234 -0.0052 

ITAPIRANGA 0.2535 0.0000 0.0000 0.2535 0.0000 0.0000 0.2535 0.0000 0.0000 0.2535 0.0000 0.0000 

ITAUBA 0.8104 0.0347 -0.0152 0.5777 123.8325 -0.0246 0.5777 123.8325 -0.0246 0.5777 123.8325 -0.0246 

ITIQUIRA I 0.7926 0.0000   0.0079 60.5067   0.0079 60.5067   0.0079 60.5067   
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ITIQUIRA II 1.2463 0.1966 -0.0037 1.2463 0.1966 -0.0037 1.2463 0.1966 -0.0037 1.2463 0.1966 -0.0037 

ITUTINGA 0.2518 0.0967   0.2114 6.8285   0.0000 52.0402   0.0000 52.0402   

JACUI 0.8407 0.0137 -0.0080 0.5504 59.4640 -0.0005 0.0000 181.8311 0.0000 0.0000 181.8311 0.0000 

JAGUARA 0.4054 0.9551   0.3155 84.4947   0.3155 84.4947   0.3155 84.4947   

JAURU 0.9303 0.1308 -0.0080 0.7987 16.0082 -0.0094 0.7987 16.0082 -0.0094 0.7987 16.0082 -0.0094 

JIRAU 0.1700 0.8716 -0.0144 0.1357 428.5026 -0.0289 0.0527 

2440.398

9 -0.0294 -0.0005 

3819.011

9 -0.0300 

JLM GODOY PEREIRA (Ex Foz do Rio Claro) 0.2479 0.4158 -0.0100 0.0072 66.3711 -0.0045 0.0072 66.3711 -0.0045 0.0072 66.3711 -0.0045 

JUPIA 0.1990 19.7707 -0.0133 0.1760 85.6445 -0.0215 0.1554 187.7529 -0.0300 0.1094 536.4174 -0.0371 

L. E. MAGALHÃES (Ex UHE Lajeado) 0.3481 2.3367 -0.0316 0.0435 768.3864 -0.0286 0.0005 900.6137 -0.0210 -0.0003 903.0749 -0.0168 

LUCAS N. GARCEZ (Salto Grande) 0.1498 0.1971 -0.0075 0.0370 54.4056 -0.0051 0.0001 73.9404 -0.0019 0.0001 73.9671 -0.0002 

LUIZ CARLOS BARRETO (Estreito) 0.5590 0.7559 -0.0071 0.5590 0.7559 -0.0071 0.5590 0.7559 -0.0071 0.5590 0.7559 -0.0071 

MASCARENHAS 0.1918 1.4807 -0.0140 0.1505 30.1671 -0.0209 0.0001 197.8628 -0.0170 0.0003 197.7115 -0.0160 

MONTE CLARO 0.3762 0.0072   0.0588 108.3969   0.0588 108.3969   0.0588 108.3969   

NILO PEÇANHA 2.4575     2.4575     2.4575     2.4575     

NOVA AVANHANDAVA 0.2818 1.0641 -0.0105 0.0253 313.0044 -0.0042 0.0001 347.2680 0.0000 0.0001 347.2680 0.0000 

OURINHOS 0.0939 0.2154   0.0836 2.0622   0.0577 13.2836   0.0577 13.2836   

PARANHOS 0.2685 0.0000 0.0000 0.2685 0.0000 0.0000 0.2685 0.0000 0.0000 0.2685 0.0000 0.0000 

PASSO SÃO JOÃO 0.2732 0.0244 -0.0071 0.1855 23.2995 -0.0055 0.0000 79.7488 0.0000 0.0000 79.7488 0.0000 

PEREIRA PASSOS 0.3414   -0.0008 0.3070 2.0816 0.1711 0.3070 2.0816 0.1711 0.3070 2.0816 0.1711 

PIRAJU 0.2283 0.2055 -0.0058 0.2038 5.6381 -0.0094 0.2038 5.6381 -0.0094 0.2038 5.6381 -0.0094 

PONTE DE PEDRA 2.0386 0.2978   1.1769 63.9152   -0.0162 154.5913   -0.0162 154.5913   

PORTO COLÔMBIA 0.1723 0.1368 -0.0031 0.0558 216.9435 -0.0004 0.0558 216.9435 -0.0004 0.0558 216.9435 -0.0004 

RISOLETA NEVES (Ex-Candonga) 0.4446 0.2047 -0.0116 0.3757 17.2247 -0.0170 0.3757 17.2247 -0.0170 0.3757 17.2247 -0.0170 

RONDON II 0.5495 0.2656   0.2907 33.1375   0.2907 33.1375   0.2907 33.1375   

ROSAL 1.7352 0.0110   0.7511 29.7421   0.7511 29.7421   0.7511 29.7421   

ROSANA 0.1930 1.4554 -0.0103 0.1540 36.1593 -0.0178 0.1146 112.6619 -0.0176 -0.0005 355.3011 -0.0061 

SÁ CARVALHO 1.0075 0.0000 0.0000 0.1763 63.7432 0.0000   77.8162 0.0000   77.8162 0.0000 
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SALTO 0.4431 0.5013 -0.0070 0.3696 17.7995 -0.0107 0.3696 17.7995 -0.0107 0.3696 17.7995 -0.0107 

SALTO APIACÁS 0.2218     0.2218     0.2218     0.2218     

SALTO GRANDE - MG 1.0243 0.0873   0.2627 74.1876   0.0000 101.4031   0.0000 101.4031   

SALTO OSORIO 0.6354 0.4819 -0.0125 0.6354 0.4819 -0.0125 0.6354 0.4819 -0.0125 0.6354 0.4819 -0.0125 

SALTO PILAO 1.7859 0.0093 -0.0046 1.1004 71.3369 0.0000 1.1004 71.3369 0.0000 1.1004 71.3369 0.0000 

SALTO RIO VERDINHO 0.3639 0.5951 -0.0072 0.2976 15.8543 -0.0114 0.2976 15.8543 -0.0114 0.2976 15.8543 -0.0114 

SANTA CLARA - MG 0.4431 0.0048   0.1961 29.9786   0.1961 29.9786   0.1961 29.9786   

SANTO ANTONIO 0.2113 26.9588 -0.0144 0.1412 409.3336 -0.0236 0.0935 

1050.109

1 -0.0145 0.0610 

1777.759

7 -0.0080 

SANTO ANTONIO JARI 0.2516 0.0597 -0.0072 0.2242 14.8633 -0.0191 0.0549 278.6291 -0.0172 0.0549 278.6291 -0.0172 

SÃO DOMINGOS 0.2914 1.6359 -0.0054 0.2914 1.6359 -0.0054 0.2914 1.6359 -0.0054 0.2914 1.6359 -0.0054 

SÃO JOSE 0.1992 0.0136 -0.0046 0.0169 46.3226 -0.0002 0.0000 50.9450 0.0000 0.0000 50.9450 0.0000 

SAO LUIZ TAPAJOS 0.3407 122.9134   0.3060 335.6572   0.2721 854.4328   0.2721 854.4328   

SÃO MANOEL 0.2443 2.5994 -0.0113 0.2164 26.4495 -0.0223 0.1914 70.7385 -0.0326 0.1685 132.2065 -0.0443 

SÃO SALVADOR 0.2065 0.0230 -0.0041 0.2065 0.0230 -0.0041 0.2065 0.0230 -0.0041 0.2065 0.0230 -0.0041 

SERRA QUEBRADA 0.2637 1.4181 -0.0091 0.2354 55.7857 -0.0232 0.2354 55.7857 -0.0232 0.2354 55.7857 -0.0232 

SIMPLICIO 0.9451   -0.0045 0.9451   -0.0045 0.9451   -0.0045 0.9451   -0.0045 

SOBRAGÍ 0.6616 0.0000   0.5769 7.3032   0.5769 7.3032   0.5769 7.3032   

TABAJARA 0.2572 2.0304 -0.0086 0.2280 12.7332 -0.0146 0.2049 31.0561 -0.0216 0.2049 31.0561 -0.0216 

TAQUARUCU (Escola Politécnica) 0.2232 0.4403 -0.0069 0.1997 27.7763 -0.0132 0.1026 262.9145 -0.0126 0.1026 262.9145 -0.0126 

TELEMACO BORBA 0.4522 0.0374   0.4522 0.0374   0.4522 0.0374   0.4522 0.0374   

TELES PIRES 0.5199 1.5907 -0.0162 0.4647 101.0626 -0.0306 0.1327 

1331.006

3 -0.0283 0.1327 

1331.006

3 -0.0283 

VOLTA GRANDE 0.2445 0.5407   0.2445 0.5407   0.2445 0.5407   0.2445 0.5407   

XINGÓ 1.0966 6.7980 -0.0123 0.7583 899.2673 -0.0055 0.7583 899.2673 -0.0055 0.7583 899.2673 -0.0055 

*own calculation based on [127], [150] 

** units = 𝛾𝑄
ℎ𝑇,𝑝𝑙𝑛𝑅

: (MW·s/m³); 𝛾𝑜
ℎ𝑇,𝑝𝑙𝑛𝑅

: (MW); 𝛾𝑆
ℎ𝑇,𝑝𝑙𝑛𝑅

: (MW·s/m³).  
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E. Transmission system data 

Table II-8. Power Transfer Distribution Factor (PTDF)*. 

Bus/Line BUS-1 BUS-2 BUS-3 BUS-4 BUS-5 BUS-6 BUS-7-8 BUS-9 BUS-10 BUS-IMP BUS-XIN BUS-IV 

BUS-1 BUS-IMP 0.380952 -0.19048 -0.14286 -0.14286 0 0 0 0 0 -0.2381 -0.14286 0 

BUS-1 BUS-7-8 0.619048 0.190476 0.142857 0.142857 0 0 0 0 0 0.238095 0.142857 0 

BUS-2 BUS-IMP -0.04762 0.52381 0.142857 0.142857 0 0 0 0 0 -0.09524 0.142857 0 

BUS-2 BUS-XIN 0.047619 0.47619 -0.14286 -0.14286 0 0 0 0 0 0.095238 -0.14286 0 

BUS-3 BUS-XIN 0 0 1 0 0 0 0 0 0 0 0 0 

BUS-4 BUS-XIN 0 0 0 1 0 0 0 0 0 0 0 0 

BUS-5 BUS-7-8 0 0 0 0 1 0 0 0 0 0 0 0 

BUS-6 BUS-7-8 0 0 0 0 0 1 0 0 0 0 0 0 

BUS-7-8 BUS-IMP -0.2381 -0.38095 -0.28571 -0.28571 0 0 0 0 0 -0.47619 -0.28571 0 

BUS-7-8 BUS-XIN -0.14286 -0.42857 -0.57143 -0.57143 0 0 0 0 0 -0.28571 -0.57143 0 

BUS-7-8 BUS-9 0 0 0 0 0 0 0 -0.5 -0.25 0 0 -0.25 

BUS-7-8 BUS-10 0 0 0 0 0 0 0 -0.25 -0.5 0 0 -0.25 

BUS-7-8 BUS-IV 0 0 0 0 0 0 0 -0.25 -0.25 0 0 -0.5 

BUS-9 BUS-10 0 0 0 0 0 0 0 0.25 -0.25 0 0 0 

BUS-9 BUS-IV 0 0 0 0 0 0 0 0.25 0 0 0 -0.25 

BUS-10 BUS-IV 0 0 0 0 0 0 0 0 0.25 0 0 -0.25 

BUS-XIN BUS-IMP -0.09524 0.047619 0.285714 0.285714 0 0 0 0 0 -0.19048 0.285714 0 

*own calculation  
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Table II-9. Transmission Lines Capacity*. 

Transmission Line 
𝐶𝑎𝑝𝑇𝑥𝑙𝑖𝑛𝑒,𝑙𝑖𝑚+ 

(MW) 

𝐶𝑎𝑝𝑇𝑥𝑙𝑖𝑛𝑒,𝑙𝑖𝑚− 

(MW) 

BUS-1 BUS-IMP 4849 8200 

BUS-1 BUS-7-8 6936 6500 

BUS-2 BUS-IMP 8518 8518 

BUS-2 BUS-XIN 2700 2700 

BUS-3 BUS-XIN 2700 2700 

BUS-4 BUS-XIN 11000 11000 

BUS-5 BUS-7-8 7092 485 

BUS-6 BUS-7-8 10500 0 

BUS-7-8 BUS-IMP 5598 5380 

BUS-7-8 BUS-XIN 6540 8000 

BUS-7-8 BUS-9 0 5500 

BUS-7-8 BUS-10 9420 9108 

BUS-7-8 BUS-IV 0 6800 

BUS-9 BUS-10 2112 192 

BUS-9 BUS-IV 6300 0 

BUS-10 BUS-IV 2317 2426 

BUS-XIN BUS-IMP 4115 4115 

* based on [104] 
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F. Additional data 

Table II-10. Wind hotspot localization*. 

Name X (long.) Y (lat.) Name X 

(long.) 

Y 

(lat.) 

HS-1-Parnaíba 41.601 2.919 HS-14-Paranaíba 51.180 19.670 

HS-2-Macau 36.633 5.117 HS-15-Arraial do Cabo 42.032 22.984 

HS-3-Ceará Mirim 35.417 5.649 HS-16-São Paulo-

Congonhas 

46.656 23.627 

HS-4-Florânia 36.818 6.122 HS-17-Chapecó 52.618 27.096 

HS-5-Campo Sales 40.390 6.994 HS-18-Florianópolis 48.550 27.671 

HS-6-Paulistana 41.136 8.135 HS-19-São Joaquim 49.932 28.294 

HS-7-Garanhuns 36.512 8.884 HS-20-São Luiz Gonzaga 54.961 28.408 

HS-8-Petrolina 40.503 9.381 HS-21-Torres 49.734 29.335 

HS-9-Barra 43.150 11.091 HS-22-Rivera 55.533 30.891 

HS-10-Morro do Chapéu 41.156 11.550 HS-23-Bage 54.107 31.331 

HS-11-Caetité 42.578 14.049 HS-24-Pelotas 52.342 31.783 

HS-12-Espinoza 42.845 14.920 HS-25-Santa Vitoria do 

Palmar 

53.368 33.519 

HS-13-Diamantina 43.600 18.249    

* based on [133] and [134]. 

 

Table II-11. Installed capacity for small thermal and hydro power plants. 
 

Capacity (MW) 

Power bus Small thermal power plant Small hydropower plant 

B1 1388.1 209.67 

B2 110.1 359.23 

B3 551.2  

B5 82.2 134.59 

B6 1081.4  

B7-8 9216.59 4962.88 

B10 964.9 2659.73 

* based on [133] and [134]. 

 

fim 3 

 


